1
|
Zhang L, Liu W, Wang HY, Qiang W, Wang R, Cui ZL, Zhang ZM. The temporal progression of retinal degeneration and early-stage idebenone treatment in the Pde6b rd1/rd1 mouse model of retinal dystrophy. Sci Rep 2024; 14:2019. [PMID: 38263197 PMCID: PMC10805728 DOI: 10.1038/s41598-024-52391-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 01/18/2024] [Indexed: 01/25/2024] Open
Abstract
Photoreceptor cell death, primarily through apoptosis, related to retinal disorders like retinitis pigmentosa (RP), would result in vision loss. The pathological processes and crucial mutant conditions preceding photoreceptor cell demise are not well understood. This study aims to conduct an in-depth examination of early-stage changes in the widely utilized Pde6brd1/rd1 (rd1) mouse model, which has Pde6b gene mutations representing autosomal recessive RP disorder. We investigated the morphology and ultrastructure of retinal cells, including second-order neurons, during the initial phase of disease progression. Our findings revealed that mitochondrial alterations in rod photoreceptors were present as a predeath mutant state as early as postnatal day 3 (P3). The bipolar and horizontal cells from the rd1 mouse retina exhibited significant morphological changes in response to loss of photoreceptor cells, indicating that second-order neurons rely on these cells for their structures. Subsequent oral administration of idebenone, a mitochondria-protective agent, enhanced retinal function and promoted both photoreceptor cell survival and inner retinal second-order synaptogenesis in rd1 mice at P14. Our findings offer a mechanistic framework, suggesting that mitochondrial damage acts as an early driver for photoreceptor cell death in retinal degeneration.
Collapse
Affiliation(s)
- Lei Zhang
- Shaanxi Eye Hospital, Xi'an People's Hospital (Xi'an Fourth Hospital), Xi'an, 710004, China
- Xi'an Key Laboratory of Digital Medical Technology of Ophthalmologic Imaging, Xi'an People's Hospital (Xi'an Fourth Hospital), Xi'an, 710004, China
| | - Wei Liu
- Medical Experiment Center, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi Province, China
| | - Hai-Yan Wang
- Shaanxi Eye Hospital, Xi'an People's Hospital (Xi'an Fourth Hospital), Xi'an, 710004, China.
- Xi'an Key Laboratory of Digital Medical Technology of Ophthalmologic Imaging, Xi'an People's Hospital (Xi'an Fourth Hospital), Xi'an, 710004, China.
| | - Wei Qiang
- Shaanxi Eye Hospital, Xi'an People's Hospital (Xi'an Fourth Hospital), Xi'an, 710004, China
- Xi'an Key Laboratory of Digital Medical Technology of Ophthalmologic Imaging, Xi'an People's Hospital (Xi'an Fourth Hospital), Xi'an, 710004, China
| | - Ru Wang
- Shaanxi Eye Hospital, Xi'an People's Hospital (Xi'an Fourth Hospital), Xi'an, 710004, China
- Xi'an Key Laboratory of Digital Medical Technology of Ophthalmologic Imaging, Xi'an People's Hospital (Xi'an Fourth Hospital), Xi'an, 710004, China
| | - Zhi-Li Cui
- Shaanxi Eye Hospital, Xi'an People's Hospital (Xi'an Fourth Hospital), Xi'an, 710004, China
- Xi'an Key Laboratory of Digital Medical Technology of Ophthalmologic Imaging, Xi'an People's Hospital (Xi'an Fourth Hospital), Xi'an, 710004, China
| | - Zuo-Ming Zhang
- Department of Clinical Medicine, Faculty of Aerospace Medicine, Air Force Medical University, Xi'an, 710032, Shaanxi Province, China.
| |
Collapse
|
2
|
Kors S, Costello JL, Schrader M. VAP Proteins - From Organelle Tethers to Pathogenic Host Interactors and Their Role in Neuronal Disease. Front Cell Dev Biol 2022; 10:895856. [PMID: 35756994 PMCID: PMC9213790 DOI: 10.3389/fcell.2022.895856] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 04/25/2022] [Indexed: 12/26/2022] Open
Abstract
Vesicle-associated membrane protein (VAMP)-associated proteins (VAPs) are ubiquitous ER-resident tail-anchored membrane proteins in eukaryotic cells. Their N-terminal major sperm protein (MSP) domain faces the cytosol and allows them to interact with a wide variety of cellular proteins. Therefore, VAP proteins are vital to many cellular processes, including organelle membrane tethering, lipid transfer, autophagy, ion homeostasis and viral defence. Here, we provide a timely overview of the increasing number of VAPA/B binding partners and discuss the role of VAPA/B in maintaining organelle-ER interactions and cooperation. Furthermore, we address how viruses and intracellular bacteria hijack VAPs and their binding partners to induce interactions between the host ER and pathogen-containing compartments and support pathogen replication. Finally, we focus on the role of VAP in human disease and discuss how mutated VAPB leads to the disruption of cellular homeostasis and causes amyotrophic lateral sclerosis.
Collapse
Affiliation(s)
- Suzan Kors
- *Correspondence: Suzan Kors, ; Michael Schrader,
| | | | | |
Collapse
|