1
|
He M, Yang X, Xiong C, Gan Y, Ma H, Qiu J, Chen Y, Zhang Q. Divergent roles of the acetyl-CoA synthetases RkACS1 and RkACS2 in carotenoid and lipid biosynthesis in Rhodosporidium kratochvilovae. Appl Microbiol Biotechnol 2025; 109:140. [PMID: 40483358 PMCID: PMC12145312 DOI: 10.1007/s00253-025-13534-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2025] [Revised: 04/29/2025] [Accepted: 05/31/2025] [Indexed: 06/11/2025]
Abstract
Red yeasts demonstrate considerable potential in industrial and biotechnological applications, particularly in the biosynthesis of carotenoids and lipids, which are valuable secondary metabolites with a wide range of applications. In the oleaginous red yeast Rhodosporidium kratochvilovae YM25235, the acetyl-CoA synthetases RkACS1 and RkACS2 play critical roles in converting acetate into acetyl-CoA, a key precursor for the synthesis of various metabolites, including carotenoids and lipids. This study explores the physiological functions and metabolic regulation of RkACS1 and RkACS2, revealing distinct roles for these isoenzymes in metabolic processes. RkACS1 is essential for utilizing non-fermentable carbon sources such as acetate, ethanol, and glycerol, exhibiting high affinity for acetate and being activated by acetate while inhibited by glucose. Additionally, RkACS1 is involved in carotenoid biosynthesis. In contrast, RkACS2, while not specific to particular carbon sources, is primarily involved in lipid and fatty acid synthesis. It also influences gene expression through histone acetylation in the nucleus. Notably, these two isoenzymes exhibit functional redundancy and mutual regulation. These findings provide valuable insights into the metabolic regulation of acetyl-CoA synthesis, offering a foundation for engineering strategies aimed at optimizing secondary metabolite production in oleaginous red yeasts. KEY POINTS: • RkACS1 is related to carotenoid biosynthesis and essential for non-fermentable carbon sources • RkACS2 supports lipid and fatty acid biosynthesis and regulates histone acetylation in the nucleus • Functional redundancy and mutual regulation exist between RkACS1 and RkACS2 isoenzymes.
Collapse
Affiliation(s)
- Meixia He
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, China
| | - Xiaoxia Yang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, China
| | - Chao Xiong
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, China
| | - Yuxuan Gan
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, China
| | - Hongjun Ma
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, China
| | - Jingwen Qiu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, China
| | - Yuan Chen
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, China.
| | - Qi Zhang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, China.
| |
Collapse
|
2
|
Wang C, Ma C, Xu Y, Chang S, Wu H, Yan C, Chen J, Wu Y, An S, Xu J, Han Q, Jiang Y, Jiang Z, Chu X, Gao H, Zhang X, Chang Y. Dynamics of the mammalian pyruvate dehydrogenase complex revealed by in-situ structural analysis. Nat Commun 2025; 16:917. [PMID: 39843418 PMCID: PMC11754459 DOI: 10.1038/s41467-025-56171-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 01/10/2025] [Indexed: 01/24/2025] Open
Abstract
The multi-enzyme pyruvate dehydrogenase complex (PDHc) links glycolysis to the citric acid cycle and plays vital roles in metabolism, energy production, and cellular signaling. Although all components have been individually characterized, the intact PDHc structure remains unclear, hampering our understanding of its composition and dynamical catalytic mechanisms. Here, we report the in-situ architecture of intact mammalian PDHc by cryo-electron tomography. The organization of peripheral E1 and E3 components varies substantially among the observed PDHcs, with an average of 21 E1 surrounding each PDHc core, and up to 12 E3 locating primarily along the pentagonal openings. In addition, we observed dynamic interactions of the substrate translocating lipoyl domains (LDs) with both E1 and E2, and the interaction interfaces were further analyzed by molecular dynamics simulations. By revealing intrinsic dynamics of PDHc peripheral compositions, our findings indicate a distinctive activity regulation mechanism, through which the number of E1, E3 and functional LDs may be coordinated to meet constantly changing demands of metabolism.
Collapse
Affiliation(s)
- Chen Wang
- Department of Pathology of Sir Run Run Shaw Hospital and Department of Biophysics, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Cheng Ma
- Protein Facility, Core Facilities, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Yuanyou Xu
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Shenghai Chang
- Department of Pathology of Sir Run Run Shaw Hospital and Department of Biophysics, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Center of Cryo-Electron Microscopy, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Hangjun Wu
- Department of Pathology of Sir Run Run Shaw Hospital and Department of Biophysics, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Center of Cryo-Electron Microscopy, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Chunlan Yan
- Department of Pathology of Sir Run Run Shaw Hospital and Department of Biophysics, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Jinghua Chen
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yongping Wu
- College of Veterinary Medicine, College of Animal Science and Technology, Zhejiang A&F University, Hangzhou, Zhejiang, China
| | - Shaoya An
- Department of Pathology of Sir Run Run Shaw Hospital and Department of Biophysics, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Jiaqi Xu
- Department of Pathology of Sir Run Run Shaw Hospital and Department of Biophysics, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Qin Han
- Center of Cryo-Electron Microscopy, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Yujie Jiang
- Department of Pathology of Sir Run Run Shaw Hospital and Department of Biophysics, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Zhinong Jiang
- Department of Pathology of Sir Run Run Shaw Hospital and Department of Biophysics, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Xiakun Chu
- Advanced Materials Thrust, The Hong Kong University of Science and Technology (Guangzhou), Guangzhou, Guangdong, China
| | - Haichun Gao
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China.
| | - Xing Zhang
- Department of Pathology of Sir Run Run Shaw Hospital and Department of Biophysics, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
- Center of Cryo-Electron Microscopy, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
| | - Yunjie Chang
- Center of Cryo-Electron Microscopy, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
- Department of Infectious Diseases of Sir Run Run Shaw Hospital and Department of Cell Biology, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
| |
Collapse
|
3
|
Stacpoole PW, Dirain CO. The pyruvate dehydrogenase complex at the epigenetic crossroads of acetylation and lactylation. Mol Genet Metab 2024; 143:108540. [PMID: 39067348 DOI: 10.1016/j.ymgme.2024.108540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 06/25/2024] [Accepted: 07/15/2024] [Indexed: 07/30/2024]
Abstract
The pyruvate dehydrogenase complex (PDC) is remarkable for its size and structure as well as for its physiological and pathological importance. Its canonical location is in the mitochondrial matrix, where it primes the tricarboxylic acid (TCA) cycle by decarboxylating glycolytically-derived pyruvate to acetyl-CoA. Less well appreciated is its role in helping to shape the epigenetic landscape, from early development throughout mammalian life by its ability to "moonlight" in the nucleus, with major repercussions for human healthspan and lifespan. The PDC's influence on two crucial modifiers of the epigenome, acetylation and lactylation, is the focus of this brief review.
Collapse
Affiliation(s)
- Peter W Stacpoole
- University of Florida, College of Medicine Department of Medicine, Department of Biochemistry & Molecular Biology, Gainesville, FL, United States.
| | - Carolyn O Dirain
- University of Florida, College of Medicine Department of Medicine, Gainesville, FL, United States
| |
Collapse
|
4
|
Russo M, Gualdrini F, Vallelonga V, Prosperini E, Noberini R, Pedretti S, Borriero C, Di Chiaro P, Polletti S, Imperato G, Marenda M, Ghirardi C, Bedin F, Cuomo A, Rodighiero S, Bonaldi T, Mitro N, Ghisletti S, Natoli G. Acetyl-CoA production by Mediator-bound 2-ketoacid dehydrogenases boosts de novo histone acetylation and is regulated by nitric oxide. Mol Cell 2024; 84:967-980.e10. [PMID: 38242130 PMCID: PMC7615796 DOI: 10.1016/j.molcel.2023.12.033] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 12/08/2023] [Accepted: 12/21/2023] [Indexed: 01/21/2024]
Abstract
Histone-modifying enzymes depend on the availability of cofactors, with acetyl-coenzyme A (CoA) being required for histone acetyltransferase (HAT) activity. The discovery that mitochondrial acyl-CoA-producing enzymes translocate to the nucleus suggests that high concentrations of locally synthesized metabolites may impact acylation of histones and other nuclear substrates, thereby controlling gene expression. Here, we show that 2-ketoacid dehydrogenases are stably associated with the Mediator complex, thus providing a local supply of acetyl-CoA and increasing the generation of hyper-acetylated histone tails. Nitric oxide (NO), which is produced in large amounts in lipopolysaccharide-stimulated macrophages, inhibited the activity of Mediator-associated 2-ketoacid dehydrogenases. Elevation of NO levels and the disruption of Mediator complex integrity both affected de novo histone acetylation within a shared set of genomic regions. Our findings indicate that the local supply of acetyl-CoA generated by 2-ketoacid dehydrogenases bound to Mediator is required to maximize acetylation of histone tails at sites of elevated HAT activity.
Collapse
Affiliation(s)
- Marta Russo
- Department of Experimental Oncology, European Institute of Oncology (IEO) IRCCS, Milan 20139, Italy.
| | - Francesco Gualdrini
- Department of Experimental Oncology, European Institute of Oncology (IEO) IRCCS, Milan 20139, Italy.
| | - Veronica Vallelonga
- Department of Experimental Oncology, European Institute of Oncology (IEO) IRCCS, Milan 20139, Italy
| | - Elena Prosperini
- Department of Experimental Oncology, European Institute of Oncology (IEO) IRCCS, Milan 20139, Italy
| | - Roberta Noberini
- Department of Experimental Oncology, European Institute of Oncology (IEO) IRCCS, Milan 20139, Italy
| | - Silvia Pedretti
- DiSFeB, Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milano 20133, Italy
| | - Carolina Borriero
- Department of Experimental Oncology, European Institute of Oncology (IEO) IRCCS, Milan 20139, Italy
| | - Pierluigi Di Chiaro
- Department of Experimental Oncology, European Institute of Oncology (IEO) IRCCS, Milan 20139, Italy
| | - Sara Polletti
- Department of Experimental Oncology, European Institute of Oncology (IEO) IRCCS, Milan 20139, Italy
| | - Gabriele Imperato
- DiSFeB, Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milano 20133, Italy
| | - Mattia Marenda
- Department of Experimental Oncology, European Institute of Oncology (IEO) IRCCS, Milan 20139, Italy
| | - Chiara Ghirardi
- Department of Experimental Oncology, European Institute of Oncology (IEO) IRCCS, Milan 20139, Italy
| | - Fabio Bedin
- Department of Experimental Oncology, European Institute of Oncology (IEO) IRCCS, Milan 20139, Italy
| | - Alessandro Cuomo
- Department of Experimental Oncology, European Institute of Oncology (IEO) IRCCS, Milan 20139, Italy
| | - Simona Rodighiero
- Department of Experimental Oncology, European Institute of Oncology (IEO) IRCCS, Milan 20139, Italy
| | - Tiziana Bonaldi
- Department of Experimental Oncology, European Institute of Oncology (IEO) IRCCS, Milan 20139, Italy; Department of Hematology and Hematology-Oncology (DIPO), Università degli Studi di Milano, Milano 20122, Italy
| | - Nico Mitro
- Department of Experimental Oncology, European Institute of Oncology (IEO) IRCCS, Milan 20139, Italy; DiSFeB, Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milano 20133, Italy
| | - Serena Ghisletti
- Department of Experimental Oncology, European Institute of Oncology (IEO) IRCCS, Milan 20139, Italy.
| | - Gioacchino Natoli
- Department of Experimental Oncology, European Institute of Oncology (IEO) IRCCS, Milan 20139, Italy.
| |
Collapse
|
5
|
Russo M, Pileri F, Ghisletti S. Novel insights into the role of acetyl-CoA producing enzymes in epigenetic regulation. Front Endocrinol (Lausanne) 2023; 14:1272646. [PMID: 37842307 PMCID: PMC10570720 DOI: 10.3389/fendo.2023.1272646] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 09/12/2023] [Indexed: 10/17/2023] Open
Abstract
Inflammation-dependent changes in gene expression programs in innate immune cells, such as macrophages, involve extensive reprogramming of metabolism. This reprogramming is essential for the production of metabolites required for chromatin modifications, such as acetyl-CoA, and regulate their usage and availability impacting the macrophage epigenome. One of the most transcriptionally induced proinflammatory mediator is nitric oxide (NO), which has been shown to inhibit key metabolic enzymes involved in the production of these metabolites. Recent evidence indicates that NO inhibits mitochondrial enzymes such as pyruvate dehydrogenase (PDH) in macrophages induced by inflammatory stimulus. PDH is involved in the production of acetyl-CoA, which is essential for chromatin modifications in the nucleus, such as histone acetylation. In addition, acetyl-CoA levels in inflamed macrophages are regulated by ATP citrate lyase (ACLY) and citrate transporter SLC25A1. Interestingly, acetyl-CoA producing enzymes, such as PDH and ACLY, have also been reported to be present in the nucleus and to support the local generation of cofactors such as acetyl-CoA. Here, we will discuss the mechanisms involved in the regulation of acetyl-CoA production by metabolic enzymes, their inhibition by prolonged exposure to inflammation stimuli, their involvement in dynamic inflammatory expression changes and how these emerging findings could have significant implications for the design of novel therapeutic approaches.
Collapse
Affiliation(s)
| | | | - Serena Ghisletti
- Department of Experimental Oncology, European Institute of Oncology (IEO) IRCCS, Milan, Italy
| |
Collapse
|
6
|
Antibacterial activity of metal-phenanthroline complexes against multidrug-resistant Irish clinical isolates: a whole genome sequencing approach. J Biol Inorg Chem 2023; 28:153-171. [PMID: 36484826 PMCID: PMC9734640 DOI: 10.1007/s00775-022-01979-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 11/08/2022] [Indexed: 12/14/2022]
Abstract
Antimicrobial resistance (AMR) is one of the serious global health challenges of our time. There is now an urgent need to develop novel therapeutic agents that can overcome AMR, preferably through alternative mechanistic pathways from conventional treatments. The antibacterial activity of metal complexes (metal = Cu(II), Mn(II), and Ag(I)) incorporating 1,10-phenanthroline (phen) and various dianionic dicarboxylate ligands, along with their simple metal salt and dicarboxylic acid precursors, against common AMR pathogens were investigated. Overall, the highest level of antibacterial activity was evident in compounds that incorporate the phen ligand compared to the activities of their simple salt and dicarboxylic acid precursors. The chelates incorporating both phen and the dianion of 3,6,9-trioxaundecanedioic acid (tdda) were the most effective, and the activity varied depending on the metal centre. Whole-genome sequencing (WGS) was carried out on the reference Pseudomonas aeruginosa strain, PAO1. This strain was exposed to sub-lethal doses of lead metal-tdda-phen complexes to form mutants with induced resistance properties with the aim of elucidating their mechanism of action. Various mutations were detected in the mutant P. aeruginosa genome, causing amino acid changes to proteins involved in cellular respiration, the polyamine biosynthetic pathway, and virulence mechanisms. This study provides insights into acquired resistance mechanisms of pathogenic organisms exposed to Cu(II), Mn(II), and Ag(I) complexes incorporating phen with tdda and warrants further development of these potential complexes as alternative clinical therapeutic drugs to treat AMR infections.
Collapse
|
7
|
Paul S, Ghosh S, Kumar S. Tumor glycolysis, an essential sweet tooth of tumor cells. Semin Cancer Biol 2022; 86:1216-1230. [PMID: 36330953 DOI: 10.1016/j.semcancer.2022.09.007] [Citation(s) in RCA: 165] [Impact Index Per Article: 55.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 09/23/2022] [Accepted: 09/28/2022] [Indexed: 11/06/2022]
Abstract
Cancer cells undergo metabolic alterations to meet the immense demand for energy, building blocks, and redox potential. Tumors show glucose-avid and lactate-secreting behavior even in the presence of oxygen, a process known as aerobic glycolysis. Glycolysis is the backbone of cancer cell metabolism, and cancer cells have evolved various mechanisms to enhance it. Glucose metabolism is intertwined with other metabolic pathways, making cancer metabolism diverse and heterogeneous, where glycolysis plays a central role. Oncogenic signaling accelerates the metabolic activities of glycolytic enzymes, mainly by enhancing their expression or by post-translational modifications. Aerobic glycolysis ferments glucose into lactate which supports tumor growth and metastasis by various mechanisms. Herein, we focused on tumor glycolysis, especially its interactions with the pentose phosphate pathway, glutamine metabolism, one-carbon metabolism, and mitochondrial oxidation. Further, we describe the role and regulation of key glycolytic enzymes in cancer. We summarize the role of lactate, an end product of glycolysis, in tumor growth, and the metabolic adaptations during metastasis. Lastly, we briefly discuss limitations and future directions to improve our understanding of glucose metabolism in cancer.
Collapse
Affiliation(s)
- Sumana Paul
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, 400076 Mumbai, India
| | - Saikat Ghosh
- Neurosciences and Cellular and Structural Biology Division, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Sushil Kumar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, 400076 Mumbai, India.
| |
Collapse
|
8
|
Broxton CN, Kaur P, Lavorato M, Ganesh S, Xiao R, Mathew ND, Nakamaru-Ogiso E, Anderson VE, Falk MJ. Dichloroacetate and thiamine improve survival and mitochondrial stress in a C. elegans model of dihydrolipoamide dehydrogenase deficiency. JCI Insight 2022; 7:e156222. [PMID: 36278487 PMCID: PMC9714793 DOI: 10.1172/jci.insight.156222] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 09/12/2022] [Indexed: 01/16/2023] Open
Abstract
Dihydrolipoamide dehydrogenase (DLD) deficiency is a recessive mitochondrial disorder caused by depletion of DLD from α-ketoacid dehydrogenase complexes. Caenorhabditis elegans animal models of DLD deficiency generated by graded feeding of dld-1(RNAi) revealed that full or partial reduction of DLD-1 expression recapitulated increased pyruvate levels typical of pyruvate dehydrogenase complex deficiency and significantly altered animal survival and health, with reductions in brood size, adult length, and neuromuscular function. DLD-1 deficiency dramatically increased mitochondrial unfolded protein stress response induction and adaptive mitochondrial proliferation. While ATP levels were reduced, respiratory chain enzyme activities and in vivo mitochondrial membrane potential were not significantly altered. DLD-1 depletion directly correlated with the induction of mitochondrial stress and impairment of worm growth and neuromuscular function. The safety and efficacy of dichloroacetate, thiamine, riboflavin, 5-aminoimidazole-4-carboxamide-1-β-d-ribofuranoside (AICAR), l-carnitine, and lipoic acid supplemental therapies empirically used for human DLD disease were objectively evaluated by life span and mitochondrial stress response studies. Only dichloroacetate and thiamine showed individual and synergistic therapeutic benefits. Collectively, these C. elegans dld-1(RNAi) animal model studies demonstrate the translational relevance of preclinical modeling of disease mechanisms and therapeutic candidates. Results suggest that clinical trials are warranted to evaluate the safety and efficacy of dichloroacetate and thiamine in human DLD disease.
Collapse
Affiliation(s)
- Chynna N. Broxton
- Mitochondrial Medicine Frontier Program, Division of Human Genetics, Department of Pediatrics, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Prabhjot Kaur
- Mitochondrial Medicine Frontier Program, Division of Human Genetics, Department of Pediatrics, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Manuela Lavorato
- Mitochondrial Medicine Frontier Program, Division of Human Genetics, Department of Pediatrics, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Smruthi Ganesh
- Mitochondrial Medicine Frontier Program, Division of Human Genetics, Department of Pediatrics, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | | | - Neal D. Mathew
- Mitochondrial Medicine Frontier Program, Division of Human Genetics, Department of Pediatrics, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Eiko Nakamaru-Ogiso
- Mitochondrial Medicine Frontier Program, Division of Human Genetics, Department of Pediatrics, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Vernon E. Anderson
- Mitochondrial Medicine Frontier Program, Division of Human Genetics, Department of Pediatrics, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Marni J. Falk
- Mitochondrial Medicine Frontier Program, Division of Human Genetics, Department of Pediatrics, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Department of Pediatrics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| |
Collapse
|