1
|
Qu J, Xu Y, Zhao S, Xiong L, Jing J, Lui S, Huang J, Shi H. The biological impact of deuterium and therapeutic potential of deuterium-depleted water. Front Pharmacol 2024; 15:1431204. [PMID: 39104389 PMCID: PMC11298373 DOI: 10.3389/fphar.2024.1431204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 06/28/2024] [Indexed: 08/07/2024] Open
Abstract
Since its discovery by Harold Urey in 1932, deuterium has attracted increased amounts of attention from the scientific community, with many previous works aimed to uncover its biological effects on living organisms. Existing studies indicate that deuterium, as a relatively rare isotope, is indispensable for maintaining normal cellular function, while its enrichment and depletion can affect living systems at multiple levels, including but not limited to molecules, organelles, cells, organs, and organisms. As an important compound of deuterium, deuterium-depleted water (DDW) possess various special effects, including but not limited to altering cellular metabolism and potentially inhibiting the growth of cancer cells, demonstrating anxiolytic-like behavior, enhancing long-term memory in rats, reducing free radical oxidation, regulating lipid metabolism, harmonizing indices related to diabetes and metabolic syndrome, and alleviating toxic effects caused by cadmium, manganese, and other harmful substances, implying its tremendous potential in anticancer, neuroprotective, antiaging, antioxidant, obesity alleviation, diabetes and metabolic syndrome treatment, anti-inflammatory, and detoxification, thereby drawing extensive attention from researchers. This review comprehensively summarizes the latest progress in deuterium acting on living organisms. We start by providing a snapshot of the distribution of deuterium in nature and the tolerance of various organisms to it. Then, we discussed the impact of deuterium excess and deprivation, in the form of deuterium-enriched water (DEW) and deuterium-depleted water (DDW), on living organisms at different levels. Finally, we focused on the potential of DDW as an adjuvant therapeutic agent for various diseases and disorders.
Collapse
Affiliation(s)
- Jiao Qu
- Institute of Breast Health Medicine, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, China
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, China
| | - Yufei Xu
- Institute of Breast Health Medicine, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, China
| | - Shuang Zhao
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, China
| | - Ling Xiong
- Institute of Breast Health Medicine, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, China
| | - Jing Jing
- Institute of Breast Health Medicine, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, China
| | - Su Lui
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, China
| | - Juan Huang
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, China
| | - Hubing Shi
- Institute of Breast Health Medicine, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, China
| |
Collapse
|
2
|
Jiang C, Liu Y, Wang L, Lu F. Interaction between Heavy Water and Single-Strand DNA: A SERS Study. Molecules 2022; 27:molecules27186023. [PMID: 36144761 PMCID: PMC9505314 DOI: 10.3390/molecules27186023] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 09/03/2022] [Accepted: 09/09/2022] [Indexed: 11/16/2022] Open
Abstract
The structure and function of biological macromolecules change due to intermolecular deuterium bond formation or deuterium substitution with environmental D2O. In this study, surface-enhanced Raman spectroscopy (SERS) was used to detect interaction sites between D2O and ssDNA and their action mechanisms. SERS peaks of ssDNA changed with increasing D2O proportions, and the site of action mainly involved A and G bases, whose number strengthened the interaction between sequences and D2O and hence the SERS peak intensities. Fixing the number of A and G bases prevented changes in their positions from significantly altering the map. We also identified the interaction between ssDNA sequences that easily formed a G-quadruplex structure and D2O. The amplitude of the SERS peak intensity change reflected the ssDNA structural stability and number of active sites. These findings are highly significant for exploring genetic exchanges and mutations and could be used to determine the stability and structural changes of biological macromolecules.
Collapse
Affiliation(s)
- Chengshun Jiang
- College of Pharmacy, Naval Medical University, Shanghai 200433, China
- College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China
| | - Yan Liu
- College of Pharmacy, Naval Medical University, Shanghai 200433, China
| | - Lianghua Wang
- College of Basic Medical Sciences, Naval Medical University, Shanghai 200433, China
| | - Feng Lu
- College of Pharmacy, Naval Medical University, Shanghai 200433, China
- College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China
- Shanghai Key Laboratory for Pharmaceutical Metabolite Research, Naval Medical University, Shanghai 200433, China
- Correspondence:
| |
Collapse
|