1
|
Martínez-Puchol S, Tarradas-Alemany M, Mejías-Molina C, Itarte M, Rusiñol M, Baliellas J, Abasolo N, Canela N, Monastiri A, López-Roig M, Serra-Cobo J, Abril JF, Bofill-Mas S. Target enrichment metaviromics enables comprehensive surveillance of coronaviruses in environmental and animal samples. Heliyon 2024; 10:e31556. [PMID: 38845944 PMCID: PMC11153099 DOI: 10.1016/j.heliyon.2024.e31556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 05/08/2024] [Accepted: 05/17/2024] [Indexed: 06/09/2024] Open
Abstract
The COVID-19 pandemic has underscored the importance of understanding the role of animals in the transmission of coronaviruses (CoVs) and their impact on human health. A One Health approach, integrating human, animal, and environmental health, is essential for effective CoVs control. Next-generation sequencing has played a pivotal role in identifying and monitoring the evolution of novel CoVs strains, like SARS-CoV-2. However, viral occurrence and diversity studies in environmental and animal samples are challenging because of the complexity of viral communities and low abundance of viruses in these samples. Target enrichment sequencing (TES) has emerged as a valuable tool for investigating viral families in challenging samples. This approach involves the specific capture and enrichment of viral genomes using sequence-specific probes, thereby enhancing the efficiency of detection and characterization. In this study, we aimed to develop and validate a TES panel to study CoVs in various complex environmental and animal derived samples. The results demonstrated the panel's effectiveness in capturing and sequencing a wide diversity of CoVs providing valuable insights into their abundance and host diversity in urban wastewater, farm animal corpses lixiviates and bat guano samples. In sewage samples, CoVs were detected solely when TES was employed while in guano samples, sequencing of CoVs species was achieved in 2 out of 4 samples showing an almost three-logarithmic increase in the number of reads obtained in comparison with the untargeted approach. For animal lixiviates, only the TES application enabled the acquisition of CoVs reads. The information obtained can significantly contribute to early detection, surveillance, and control measures for CoVs, including viral discovery and potential spillover events. Additionally, this sequencing panel shows potential for studying other significant viral families and monitoring viral diversity in different animal populations.
Collapse
Affiliation(s)
- Sandra Martínez-Puchol
- Laboratory of Viruses Contaminants of Water and Food, Departament de Genètica. Microbiologia i Estadística, Universitat de Barcelona, Barcelona, Catalonia, Spain
- Vicerectorat de Recerca. Universitat de Barcelona, Barcelona, Catalonia, Spain
| | - Maria Tarradas-Alemany
- Laboratory of Viruses Contaminants of Water and Food, Departament de Genètica. Microbiologia i Estadística, Universitat de Barcelona, Barcelona, Catalonia, Spain
- Computational Genomics Lab, Departament de Genètica. Microbiologia i Estadística, Universitat de Barcelona, Barcelona, Catalonia, Spain
- Institut de Biomedicina (IBUB), Universitat de Barcelona, Barcelona, Catalonia, Spain
| | - Cristina Mejías-Molina
- Laboratory of Viruses Contaminants of Water and Food, Departament de Genètica. Microbiologia i Estadística, Universitat de Barcelona, Barcelona, Catalonia, Spain
- Institut de Recerca de l’Aigua (IdRA), Universitat de Barcelona, Barcelona, Catalonia, Spain
| | - Marta Itarte
- Laboratory of Viruses Contaminants of Water and Food, Departament de Genètica. Microbiologia i Estadística, Universitat de Barcelona, Barcelona, Catalonia, Spain
- Institut de Recerca de l’Aigua (IdRA), Universitat de Barcelona, Barcelona, Catalonia, Spain
| | - Marta Rusiñol
- Laboratory of Viruses Contaminants of Water and Food, Departament de Genètica. Microbiologia i Estadística, Universitat de Barcelona, Barcelona, Catalonia, Spain
- Institut de Recerca de l’Aigua (IdRA), Universitat de Barcelona, Barcelona, Catalonia, Spain
| | | | - Nerea Abasolo
- Centre for Omic Sciences (COS), Joint Unit Universitat Rovira i Virgili-EURECAT, Unique Scientific and Technical Infrastructures (ICTS), Eurecat, Centre Tecnològic de Catalunya, Catalonia, Spain
| | - Núria Canela
- Centre for Omic Sciences (COS), Joint Unit Universitat Rovira i Virgili-EURECAT, Unique Scientific and Technical Infrastructures (ICTS), Eurecat, Centre Tecnològic de Catalunya, Catalonia, Spain
| | - Abir Monastiri
- Departament de Biologia Evolutiva, Ecologia i Ciències Ambientals, Universitat de Barcelona, Catalonia, Spain
- Institut de Recerca de la Biodiversitat (IRBiO), Universitat de Barcelona, Catalonia, Spain
| | - Marc López-Roig
- Departament de Biologia Evolutiva, Ecologia i Ciències Ambientals, Universitat de Barcelona, Catalonia, Spain
- Institut de Recerca de la Biodiversitat (IRBiO), Universitat de Barcelona, Catalonia, Spain
| | - Jordi Serra-Cobo
- Departament de Biologia Evolutiva, Ecologia i Ciències Ambientals, Universitat de Barcelona, Catalonia, Spain
- Institut de Recerca de la Biodiversitat (IRBiO), Universitat de Barcelona, Catalonia, Spain
| | - Josep F. Abril
- Computational Genomics Lab, Departament de Genètica. Microbiologia i Estadística, Universitat de Barcelona, Barcelona, Catalonia, Spain
- Institut de Biomedicina (IBUB), Universitat de Barcelona, Barcelona, Catalonia, Spain
| | - Sílvia Bofill-Mas
- Laboratory of Viruses Contaminants of Water and Food, Departament de Genètica. Microbiologia i Estadística, Universitat de Barcelona, Barcelona, Catalonia, Spain
- Institut de Recerca de l’Aigua (IdRA), Universitat de Barcelona, Barcelona, Catalonia, Spain
| |
Collapse
|
2
|
Yang J, Wang Y, Yang H, Zhang X, Zheng X, Huang X. Infection status and molecular detection of pathogens carried by ectoparasites of Miniopterus fuliginosus bats in Yunnan, China. Parasitol Int 2024; 98:102823. [PMID: 37967717 DOI: 10.1016/j.parint.2023.102823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 10/24/2023] [Accepted: 11/08/2023] [Indexed: 11/17/2023]
Abstract
Bats serve as natural hosts for various infectious agents that can affect both humans and animals, and they are geographically widespread. In recent years, the prevalence of bat-associated pathogens has surged on a global scale, consequently generating significant interest in bats and their ectoparasites. In this study, we specifically selected the Miniopterus fuliginosus as the host and conducted bat captures in Nanjian Yi Autonomous County, Dali Bai Autonomous Prefecture, and the other in Mouding Township, Chuxiong Yi Autonomous Prefecture, located in Yunnan Province, China. Ectoparasites were meticulously collected from the bat body surface, alongside blood samples for subsequent analyses. Following collection, the ectoparasites were methodically identified and subjected to comprehensive ecological analysis. Additionally, DNA was extracted from both the bat blood and bat flies, with conventional PCR techniques utilized for molecular screening of four pathogens: Anaplasma sp., Babesia sp., Hepatozoon sp., and Bartonella sp. The capture efforts yielded a total of 37 M. fuliginosus, from which 388 ectoparasites were recovered, including 197 gamasid mites (Cr = 50.77%, PM = 94.59%, MA = 5.32, MI = 5.63) and 191 bat flies (Cr = 49.23%, PM = 75.68%, MA = 5.16, MI = 6.82). Notably, Steatonyssus nyctali (Y = 0.28, m*/m = 2.44) and Nycteribia allotopa (Y = 0.23,m*/m = 1.54) predominated among different individuals of M. fuliginosus, exhibiting an aggregated distribution pattern. The infection rates of Bartonella sp. were identified to be 18.92% (7/37) among bats and 37.17% (71/191) among bat flies, based on the testing of 37 bats and 191 bat flies. Phylogenetic analysis demonstrated that the Bartonella sequences exhibited similarity to those found in bats and bat flies within China and South Korea. This study not only contributes to our comprehension of ectoparasite infection in M. fuliginosus but also establishes a foundation for potential exploration of their role as vectors.
Collapse
Affiliation(s)
- Jinting Yang
- Institute of Pathogens and Vectors, Yunnan Provincial Key Laboratory for Zoonosis Control and Prevention, Dali University, 22 Wanhua St, Dali 671000, China
| | - Yujian Wang
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, 5268 Renmin St, Changchun 130000, China
| | - Huijuan Yang
- Department of Pathogen Biology, Institute of Tropical Medicine, School of Public Health, Southern Medical University, Shatai South Road, Guangzhou 510000, China
| | - Xianzheng Zhang
- Institute of Pathogens and Vectors, Yunnan Provincial Key Laboratory for Zoonosis Control and Prevention, Dali University, 22 Wanhua St, Dali 671000, China
| | - Xiaoyan Zheng
- Institute of Pathogens and Vectors, Yunnan Provincial Key Laboratory for Zoonosis Control and Prevention, Dali University, 22 Wanhua St, Dali 671000, China
| | - Xiaobin Huang
- Institute of Pathogens and Vectors, Yunnan Provincial Key Laboratory for Zoonosis Control and Prevention, Dali University, 22 Wanhua St, Dali 671000, China.
| |
Collapse
|
3
|
Ryu H, Kinoshita K, Joo S, Choi YS, Kim SS. Increased urinary creatinine during hibernation and day roosting in the Eastern bent-winged bat (Miniopterus fuliginosus) in Korea. Commun Biol 2024; 7:42. [PMID: 38182741 PMCID: PMC10770030 DOI: 10.1038/s42003-023-05713-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 12/15/2023] [Indexed: 01/07/2024] Open
Abstract
Torpor and arousal cycles, both daily and seasonal (e.g. hibernation), are crucial for small mammals, including bats, to maintain the energy and water balance. The alternation between torpor and arousal leads to metabolic changes, leaving traceable evidence of metabolic wastes in urine. In this study we investigated urinary creatinine and acetoacetate (a ketone body) in the Eastern bent-wing bat (Miniopterus fuliginosus) in Mungyeong, South Korea. We found an increase in urinary creatinine during torpor in summer, indicating changes in renal water reabsorption rates during the active season. Although we could not confirm ketonuria in hibernating bats due to a methodological limitation caused by the small amount of urine, we verified an increase in urinary creatinine concentration during hibernation. This finding suggests that managing water stress resulting from evaporative water loss is one of key reasons for arousal during hibernation in Eastern bent-wing bats.
Collapse
Affiliation(s)
- Heungjin Ryu
- Department of Social Informatics, Kyoto University, Yoshidahonmachi, Sakyo-ku, Kyoto, 606-8501, Japan
- National Institute of Ecology, Geumgang-ro 1210, Maseo-myeon, Seocheon, Chungnam, 33657, Republic of Korea
| | - Kodzue Kinoshita
- Graduate School of Asian and African Area Studies, Kyoto University, Yoshidahonmachi, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Sungbae Joo
- National Institute of Ecology, Geumgang-ro 1210, Maseo-myeon, Seocheon, Chungnam, 33657, Republic of Korea
| | - Yu-Seong Choi
- National Migratory Birds Center, National Institute of Biological Resources, Incheon, 22689, Republic of Korea
| | - Sun-Sook Kim
- National Institute of Ecology, Geumgang-ro 1210, Maseo-myeon, Seocheon, Chungnam, 33657, Republic of Korea.
| |
Collapse
|
4
|
Intaruck K, Itakura Y, Kishimoto M, Chambaro HM, Setiyono A, Handharyani E, Uemura K, Harima H, Taniguchi S, Saijo M, Kimura T, Orba Y, Sawa H, Sasaki M. Isolation and characterization of an orthoreovirus from Indonesian fruit bats. Virology 2022; 575:10-19. [PMID: 35987079 DOI: 10.1016/j.virol.2022.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 08/01/2022] [Accepted: 08/05/2022] [Indexed: 11/30/2022]
Abstract
Nelson Bay orthoreovirus (NBV) is an emerging bat-borne virus and causes respiratory tract infections in humans sporadically. Over the last two decades, several strains genetically related to NBV were isolated from humans and various bat species, predominantly in Southeast Asia (SEA), suggesting a high prevalence of the NBV species in this region. In this study, an orthoreovirus (ORV) belonging to the NBV species was isolated from Indonesian fruit bats' feces, tentatively named Paguyaman orthoreovirus (PgORV). Serological studies revealed that 81.2% (108/133) of Indonesian fruit bats sera had neutralizing antibodies against PgORV. Whole-genome sequencing and phylogenetic analysis of PgORV suggested the occurrence of past reassortments with other NBV strains isolated in SEA, indicating the dispersal and circulation of NBV species among bats in this region. Intranasal PgORV inoculation of laboratory mice caused severe pneumonia. Our study characterized PgORV's unique genetic background and highlighted the potential risk of PgORV-related diseases in Indonesia.
Collapse
Affiliation(s)
- Kittiya Intaruck
- Division of Molecular Pathobiology, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
| | - Yukari Itakura
- Division of Molecular Pathobiology, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
| | - Mai Kishimoto
- Division of Molecular Pathobiology, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
| | - Herman M Chambaro
- Division of Molecular Pathobiology, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
| | - Agus Setiyono
- Department of Veterinary Clinic, Reproduction and Pathology, Faculty of Veterinary Medicine, IPB University, Bogor, Indonesia
| | - Ekowati Handharyani
- Department of Veterinary Clinic, Reproduction and Pathology, Faculty of Veterinary Medicine, IPB University, Bogor, Indonesia
| | - Kentaro Uemura
- Division of Molecular Pathobiology, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan; Drug Discovery and Disease Research Laboratory, Shionogi & Co., Ltd., Osaka, Japan; Laboratory of Biomolecular Science, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
| | - Hayato Harima
- Division of International Research Promotion, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
| | - Satoshi Taniguchi
- Department of Virology 1, National Institute of Infectious Diseases, Tokyo, Japan
| | - Masayuki Saijo
- Department of Virology 1, National Institute of Infectious Diseases, Tokyo, Japan
| | - Takashi Kimura
- Laboratory of Comparative Pathology, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Yasuko Orba
- Division of Molecular Pathobiology, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan; International Collaboration Unit, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
| | - Hirofumi Sawa
- Division of Molecular Pathobiology, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan; Division of International Research Promotion, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan; International Collaboration Unit, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan; One Health Research Center, Hokkaido University, Sapporo, Japan; Global Virus Network, Baltimore, MD, USA
| | - Michihito Sasaki
- Division of Molecular Pathobiology, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan.
| |
Collapse
|
5
|
Ikeda Y, Motokawa M. Phylogeography of the Japanese greater horseshoe bat Rhinolophus nippon (Mammalia: Chiroptera) in Northeast Asia: New insight into the monophyly of the Japanese populations. Ecol Evol 2021; 11:18181-18195. [PMID: 35003666 PMCID: PMC8717313 DOI: 10.1002/ece3.8414] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 11/11/2021] [Accepted: 11/16/2021] [Indexed: 11/29/2022] Open
Abstract
The Japanese greater horseshoe bat (Rhinolophus nippon) is distributed widely in East Asia. Within the species, R. nippon in Northeast Asia is regarded as the lineage that diverged most recently. However, the monophyly of the Japanese populations is unclear due to insufficient data about phylogenetic relationship of the western Japanese populations. To test the monophyly of the Japanese populations of R. nippon, we sampled R. nippon from western Japan and performed a phylogeographic analysis based on mitochondrial DNA cytochrome b and the D-loop. The Northeast Asian lineage consisted of three main clades in eastern Japan (clade I), western Japan (clade II), and the continent as well as the Kumamoto population in westernmost Japan (clade III). The results of this study do not support the monophyly of the Japanese population. The findings suggest the "reverse colonization" of R. nippon from the Japanese Archipelago to the Eurasian continent, and provide important insight into the role of the island system in creation and supply of diversity to the continent.
Collapse
Affiliation(s)
- Yugo Ikeda
- Graduate School of ScienceKyoto UniversitySakyoKyotoJapan
| | | |
Collapse
|