2
|
Amrute JM, Lee PC, Eres I, Lee CJM, Bredemeyer A, Sheth MU, Yamawaki T, Gurung R, Anene-Nzelu C, Qiu WL, Kundu S, Li DY, Ramste M, Lu D, Tan A, Kang CJ, Wagoner RE, Alisio A, Cheng P, Zhao Q, Miller CL, Hall IM, Gupta RM, Hsu YH, Haldar SM, Lavine KJ, Jackson S, Andersson R, Engreitz JM, Foo RSY, Li CM, Ason B, Quertermous T, Stitziel NO. Single cell variant to enhancer to gene map for coronary artery disease. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.11.13.24317257. [PMID: 39606421 PMCID: PMC11601770 DOI: 10.1101/2024.11.13.24317257] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Although genome wide association studies (GWAS) in large populations have identified hundreds of variants associated with common diseases such as coronary artery disease (CAD), most disease-associated variants lie within non-coding regions of the genome, rendering it difficult to determine the downstream causal gene and cell type. Here, we performed paired single nucleus gene expression and chromatin accessibility profiling from 44 human coronary arteries. To link disease variants to molecular traits, we developed a meta-map of 88 samples and discovered 11,182 single-cell chromatin accessibility quantitative trait loci (caQTLs). Heritability enrichment analysis and disease variant mapping demonstrated that smooth muscle cells (SMCs) harbor the greatest genetic risk for CAD. To capture the continuum of SMC cell states in disease, we used dynamic single cell caQTL modeling for the first time in tissue to uncover QTLs whose effects are modified by cell state and expand our insight into genetic regulation of heterogenous cell populations. Notably, we identified a variant in the COL4A1/COL4A2 CAD GWAS locus which becomes a caQTL as SMCs de-differentiate by changing a transcription factor binding site for EGR1/2. To unbiasedly prioritize functional candidate genes, we built a genome-wide single cell variant to enhancer to gene (scV2E2G) map for human CAD to link disease variants to causal genes in cell types. Using this approach, we found several hundred genes predicted to be linked to disease variants in different cell types. Next, we performed genome-wide Hi-C in 16 human coronary arteries to build tissue specific maps of chromatin conformation and link disease variants to integrated chromatin hubs and distal target genes. Using this approach, we show that rs4887091 within the ADAMTS7 CAD GWAS locus modulates function of a super chromatin interactome through a change in a CTCF binding site. Finally, we used CRISPR interference to validate a distal gene, AMOTL2, liked to a CAD GWAS locus. Collectively we provide a disease-agnostic framework to translate human genetic findings to identify pathologic cell states and genes driving disease, producing a comprehensive scV2E2G map with genetic and tissue level convergence for future mechanistic and therapeutic studies.
Collapse
Affiliation(s)
- Junedh M. Amrute
- Center for Cardiovascular Research, Division of Cardiology, Department of Medicine, Washington University School of Medicine, Saint Louis, MO, 63110, USA
- Amgen Research, South San Francisco, CA, 94080, USA
| | - Paul C. Lee
- Center for Cardiovascular Research, Division of Cardiology, Department of Medicine, Washington University School of Medicine, Saint Louis, MO, 63110, USA
| | - Ittai Eres
- Amgen Research, South San Francisco, CA, 94080, USA
| | - Chang Jie Mick Lee
- Cardiovascular Metabolic Disease Translational Research Programme, National University Health System, Centre for Translational Medicine, 14 Medical Drive, Singapore 117599, Singapore
- Institute of Molecular and Cell Biology, 61 Biopolis Drive, Singapore 138673, Singapore
| | - Andrea Bredemeyer
- Center for Cardiovascular Research, Division of Cardiology, Department of Medicine, Washington University School of Medicine, Saint Louis, MO, 63110, USA
| | - Maya U. Sheth
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
- Basic Sciences and Engineering Initiative, Betty Irene Moore Children’s Heart Center, Lucile Packard Children’s Hospital, Stanford, CA, USA
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | | | - Rijan Gurung
- Cardiovascular Metabolic Disease Translational Research Programme, National University Health System, Centre for Translational Medicine, 14 Medical Drive, Singapore 117599, Singapore
- Institute of Molecular and Cell Biology, 61 Biopolis Drive, Singapore 138673, Singapore
| | - Chukwuemeka Anene-Nzelu
- Montreal Heart Institute, Montreal, 5000 Rue Belanger, QC, H1T 1C8, Canada
- Department of Medicine, Université de Montréal, 2900 Edouard Montpetit Blvd, Montréal, QC, H3T 1J4, Canada
| | - Wei-Lin Qiu
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
- The Novo Nordisk Foundation Center for Genomic Mechanisms of Disease, Broad Institute, Cambridge, MA, USA
| | - Soumya Kundu
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Daniel Y. Li
- Department of Medicine, Division of Cardiovascular Medicine, Stanford University, Stanford, CA 94305
| | - Markus Ramste
- Department of Medicine, Division of Cardiovascular Medicine, Stanford University, Stanford, CA 94305
| | - Daniel Lu
- Amgen Research, South San Francisco, CA, 94080, USA
| | - Anthony Tan
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
- Basic Sciences and Engineering Initiative, Betty Irene Moore Children’s Heart Center, Lucile Packard Children’s Hospital, Stanford, CA, USA
| | - Chul-Joo Kang
- Center for Cardiovascular Research, Division of Cardiology, Department of Medicine, Washington University School of Medicine, Saint Louis, MO, 63110, USA
| | - Ryan E. Wagoner
- Center for Cardiovascular Research, Division of Cardiology, Department of Medicine, Washington University School of Medicine, Saint Louis, MO, 63110, USA
| | - Arturo Alisio
- Center for Cardiovascular Research, Division of Cardiology, Department of Medicine, Washington University School of Medicine, Saint Louis, MO, 63110, USA
| | - Paul Cheng
- Department of Medicine, Division of Cardiovascular Medicine, Stanford University, Stanford, CA 94305
- Stanford Cardiovascular Institute, Stanford University, Stanford, CA 94305
| | - Quanyi Zhao
- Department of Medicine, Division of Cardiovascular Medicine, Stanford University, Stanford, CA 94305
| | - Clint L. Miller
- Center for Public Health Genomics, Department of Public Health Sciences, University of Virginia, Charlottesville
| | - Ira M. Hall
- Center for Genomic Health, Yale University, New Haven, CT, 06510, USA
- Department of Genetics, Yale University, New Haven, CT, 06510, USA
| | - Rajat M. Gupta
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Divisions of Genetics and Cardiovascular Medicine, Department of Medicine, Brigham and Women’s Hospital, Boston, MA, USA
| | - Yi-Hsiang Hsu
- Amgen Research, South San Francisco, CA, 94080, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA
| | | | - Kory J. Lavine
- Center for Cardiovascular Research, Division of Cardiology, Department of Medicine, Washington University School of Medicine, Saint Louis, MO, 63110, USA
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO, 63110, USA
- Department of Developmental Biology, Washington University School of Medicine, Saint Louis, MO, 63110, USA
| | | | - Robin Andersson
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
- The Novo Nordisk Foundation Center for Genomic Mechanisms of Disease, Broad Institute, Cambridge, MA, USA
| | - Jesse M. Engreitz
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
- Basic Sciences and Engineering Initiative, Betty Irene Moore Children’s Heart Center, Lucile Packard Children’s Hospital, Stanford, CA, USA
- The Novo Nordisk Foundation Center for Genomic Mechanisms of Disease, Broad Institute, Cambridge, MA, USA
- Stanford Cardiovascular Institute, Stanford University, Stanford, CA 94305
- Gene Regulation Observatory, Broad Institute of MIT and Harvard, Cambridge, MA 02139, USA
| | - Roger S-Y Foo
- Cardiovascular Metabolic Disease Translational Research Programme, National University Health System, Centre for Translational Medicine, 14 Medical Drive, Singapore 117599, Singapore
- Institute of Molecular and Cell Biology, 61 Biopolis Drive, Singapore 138673, Singapore
| | - Chi-Ming Li
- Amgen Research, South San Francisco, CA, 94080, USA
| | - Brandon Ason
- Amgen Research, South San Francisco, CA, 94080, USA
| | - Thomas Quertermous
- Department of Medicine, Division of Cardiovascular Medicine, Stanford University, Stanford, CA 94305
- Stanford Cardiovascular Institute, Stanford University, Stanford, CA 94305
| | - Nathan O. Stitziel
- Center for Cardiovascular Research, Division of Cardiology, Department of Medicine, Washington University School of Medicine, Saint Louis, MO, 63110, USA
- Department of Genetics, Washington University School of Medicine, Saint Louis, MO, 63110, USA
| |
Collapse
|
6
|
Sadee W, Wang D, Hartmann K, Toland AE. Pharmacogenomics: Driving Personalized Medicine. Pharmacol Rev 2023; 75:789-814. [PMID: 36927888 PMCID: PMC10289244 DOI: 10.1124/pharmrev.122.000810] [Citation(s) in RCA: 54] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 03/09/2023] [Accepted: 03/10/2023] [Indexed: 03/18/2023] Open
Abstract
Personalized medicine tailors therapies, disease prevention, and health maintenance to the individual, with pharmacogenomics serving as a key tool to improve outcomes and prevent adverse effects. Advances in genomics have transformed pharmacogenetics, traditionally focused on single gene-drug pairs, into pharmacogenomics, encompassing all "-omics" fields (e.g., proteomics, transcriptomics, metabolomics, and metagenomics). This review summarizes basic genomics principles relevant to translation into therapies, assessing pharmacogenomics' central role in converging diverse elements of personalized medicine. We discuss genetic variations in pharmacogenes (drug-metabolizing enzymes, drug transporters, and receptors), their clinical relevance as biomarkers, and the legacy of decades of research in pharmacogenetics. All types of therapies, including proteins, nucleic acids, viruses, cells, genes, and irradiation, can benefit from genomics, expanding the role of pharmacogenomics across medicine. Food and Drug Administration approvals of personalized therapeutics involving biomarkers increase rapidly, demonstrating the growing impact of pharmacogenomics. A beacon for all therapeutic approaches, molecularly targeted cancer therapies highlight trends in drug discovery and clinical applications. To account for human complexity, multicomponent biomarker panels encompassing genetic, personal, and environmental factors can guide diagnosis and therapies, increasingly involving artificial intelligence to cope with extreme data complexities. However, clinical application encounters substantial hurdles, such as unknown validity across ethnic groups, underlying bias in health care, and real-world validation. This review address the underlying science and technologies germane to pharmacogenomics and personalized medicine, integrated with economic, ethical, and regulatory issues, providing insights into the current status and future direction of health care. SIGNIFICANCE STATEMENT: Personalized medicine aims to optimize health care for the individual patients with use of predictive biomarkers to improve outcomes and prevent adverse effects. Pharmacogenomics drives biomarker discovery and guides the development of targeted therapeutics. This review addresses basic principles and current trends in pharmacogenomics, with large-scale data repositories accelerating medical advances. The impact of pharmacogenomics is discussed, along with hurdles impeding broad clinical implementation, in the context of clinical care, ethics, economics, and regulatory affairs.
Collapse
Affiliation(s)
- Wolfgang Sadee
- Department of Cancer Biology and Genetics, College of Medicine, The Ohio State University, Columbus Ohio (W.S., A.E.T.); Department of Pharmacotherapy and Translational Research, College of Pharmacy, University of Florida, Gainesville, Florida (D.W.); Department of Radiology, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania (K.H.); Department of Bioengineering and Therapeutic Sciences, Schools of Pharmacy and Medicine, University of California San Francisco, San Francisco, California (W.S.); and Aether Therapeutics, Austin, Texas (W.S.)
| | - Danxin Wang
- Department of Cancer Biology and Genetics, College of Medicine, The Ohio State University, Columbus Ohio (W.S., A.E.T.); Department of Pharmacotherapy and Translational Research, College of Pharmacy, University of Florida, Gainesville, Florida (D.W.); Department of Radiology, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania (K.H.); Department of Bioengineering and Therapeutic Sciences, Schools of Pharmacy and Medicine, University of California San Francisco, San Francisco, California (W.S.); and Aether Therapeutics, Austin, Texas (W.S.)
| | - Katherine Hartmann
- Department of Cancer Biology and Genetics, College of Medicine, The Ohio State University, Columbus Ohio (W.S., A.E.T.); Department of Pharmacotherapy and Translational Research, College of Pharmacy, University of Florida, Gainesville, Florida (D.W.); Department of Radiology, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania (K.H.); Department of Bioengineering and Therapeutic Sciences, Schools of Pharmacy and Medicine, University of California San Francisco, San Francisco, California (W.S.); and Aether Therapeutics, Austin, Texas (W.S.)
| | - Amanda Ewart Toland
- Department of Cancer Biology and Genetics, College of Medicine, The Ohio State University, Columbus Ohio (W.S., A.E.T.); Department of Pharmacotherapy and Translational Research, College of Pharmacy, University of Florida, Gainesville, Florida (D.W.); Department of Radiology, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania (K.H.); Department of Bioengineering and Therapeutic Sciences, Schools of Pharmacy and Medicine, University of California San Francisco, San Francisco, California (W.S.); and Aether Therapeutics, Austin, Texas (W.S.)
| |
Collapse
|
8
|
Wen H, Chen W, Chen Y, Wei G, Ni T. Integrative analysis of Iso-Seq and RNA-seq reveals dynamic changes of alternative promoter, alternative splicing and alternative polyadenylation during Angiotensin II-induced senescence in rat primary aortic endothelial cells. Front Genet 2023; 14:1064624. [PMID: 36741323 PMCID: PMC9892061 DOI: 10.3389/fgene.2023.1064624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 01/10/2023] [Indexed: 01/21/2023] Open
Abstract
In eukaryotes, alternative promoter (AP), alternative splicing (AS), and alternative polyadenylation (APA) are three crucial regulatory mechanisms that modulate message RNA (mRNA) diversity. Although AP, AS and APA are involved in diverse biological processess, whether they have dynamic changes in Angiotensin II (Ang II) induced senescence in rat primary aortic endothelial cells (RAECs), an important cellular model for studying cardiovascular disease, remains unclear. Here we integrated both PacBio single-molecule long-read isoform sequencing (Iso-Seq) and Illumina short-read RNA sequencing (RNA-seq) to analyze the changes of AP, AS and APA in Ang II-induced senescent RAECs. Iso-Seq generated 36,278 isoforms from 10,145 gene loci and 65.81% of these isoforms are novel, which were further cross-validated by public data obtained by other techonologies such as CAGE, PolyA-Seq and 3'READS. APA contributed most to novel isoforms, followed by AS and AP. Further investigation showed that AP, AS and APA could all contribute to the regulation of isoform, but AS has more dynamic changes compared to AP and APA upon Ang II stimulation. Genes undergoing AP, AS and APA in Ang II-treated cells are enriched in various pathways related to aging or senescence, suggesting that these molecular changes are involved in functional alterations during Ang II-induced senescence. Together, the present study largely improved the annotation of rat genome and revealed gene expression changes at isoform level, extending the understanding of the complexity of gene regulation in Ang II-treated RAECs, and also provided novel clues for discovering the regulatory mechanism undelying Ang II caused vascular senescence and diseases.
Collapse
Affiliation(s)
- Haimei Wen
- Collaborative Innovation Center of Genetics and Development, School of Life Sciences, Human Phenome Institute, Fudan University, Shanghai, China
- Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai, China
| | - Wei Chen
- Collaborative Innovation Center of Genetics and Development, School of Life Sciences, Human Phenome Institute, Fudan University, Shanghai, China
| | - Yu Chen
- Collaborative Innovation Center of Genetics and Development, School of Life Sciences, Human Phenome Institute, Fudan University, Shanghai, China
| | - Gang Wei
- Collaborative Innovation Center of Genetics and Development, School of Life Sciences, Human Phenome Institute, Fudan University, Shanghai, China
- Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai, China
| | - Ting Ni
- Collaborative Innovation Center of Genetics and Development, School of Life Sciences, Human Phenome Institute, Fudan University, Shanghai, China
| |
Collapse
|