1
|
Peng H, Deng J, Jiang S, Timmerman R. Rethinking the potential role of dose painting in personalized ultra-fractionated stereotactic adaptive radiotherapy. Front Oncol 2024; 14:1357790. [PMID: 38571510 PMCID: PMC10987838 DOI: 10.3389/fonc.2024.1357790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 02/21/2024] [Indexed: 04/05/2024] Open
Abstract
Fractionated radiotherapy was established in the 1920s based upon two principles: (1) delivering daily treatments of equal quantity, unless the clinical situation requires adjustment, and (2) defining a specific treatment period to deliver a total dosage. Modern fractionated radiotherapy continues to adhere to these century-old principles, despite significant advancements in our understanding of radiobiology. At UT Southwestern, we are exploring a novel treatment approach called PULSAR (Personalized Ultra-Fractionated Stereotactic Adaptive Radiotherapy). This method involves administering tumoricidal doses in a pulse mode with extended intervals, typically spanning weeks or even a month. Extended intervals permit substantial recovery of normal tissues and afford the tumor and tumor microenvironment ample time to undergo significant changes, enabling more meaningful adaptation in response to the evolving characteristics of the tumor. The notion of dose painting in the realm of radiation therapy has long been a subject of contention. The debate primarily revolves around its clinical effectiveness and optimal methods of implementation. In this perspective, we discuss two facets concerning the potential integration of dose painting with PULSAR, along with several practical considerations. If successful, the combination of the two may not only provide another level of personal adaptation ("adaptive dose painting"), but also contribute to the establishment of a timely feedback loop throughout the treatment process. To substantiate our perspective, we conducted a fundamental modeling study focusing on PET-guided dose painting, incorporating tumor heterogeneity and tumor control probability (TCP).
Collapse
Affiliation(s)
- Hao Peng
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX, United States
- Medical Artificial Intelligence and Automation Laboratory, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Jie Deng
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX, United States
- Medical Artificial Intelligence and Automation Laboratory, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Steve Jiang
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX, United States
- Medical Artificial Intelligence and Automation Laboratory, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Robert Timmerman
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX, United States
| |
Collapse
|
2
|
Le Sauteur-Robitaille J, Crosley P, Hitt M, Jenner AL, Craig M. Mathematical modeling predicts pathways to successful implementation of combination TRAIL-producing oncolytic virus and PAC-1 to treat granulosa cell tumors of the ovary. Cancer Biol Ther 2023; 24:2283926. [PMID: 38010777 PMCID: PMC10783843 DOI: 10.1080/15384047.2023.2283926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 11/10/2023] [Indexed: 11/29/2023] Open
Abstract
The development of new cancer therapies requires multiple rounds of validation from in vitro and in vivo experiments before they can be considered for clinical trials. Mathematical models assist in this preclinical phase by combining experimental data with human parameters to provide guidance about potential therapeutic regimens to bring forward into trials. However, granulosa cell tumors of the ovary lack a relevant mouse model, complexifying preclinical drug development for this rare tumor. To bridge this gap, we established a mathematical model as a framework to explore the potential of using a tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-producing oncolytic vaccinia virus in combination with the chemotherapeutic agent first procaspase activating compound (PAC-1). We have previously shown that TRAIL and PAC-1 act synergistically on granulosa tumor cells. In line with our previous results, our current model predicts that, although it is unable to stop the tumor from growing in its current form, combination oral PAC-1 with oncolytic virus (OV) provides the best result compared to monotherapies. Encouragingly, our results suggest that increases to the OV infection rate can lead to the success of this combination therapy within a year. The model developed here can continue to be improved as more data become available, allowing for regimen-tailoring via virtual clinical trials, ultimately shepherding effective regimens into trials.
Collapse
Affiliation(s)
- Justin Le Sauteur-Robitaille
- Department of Mathematics and Statistics, Université de Montréal, Quebec, Canada
- Sainte-Justine University Hospital Research Centre, Montréal, Québec, Canada
| | - Powel Crosley
- Department of Oncology, University of Alberta, Edmonton, Canada
| | - Mary Hitt
- Department of Oncology, University of Alberta, Edmonton, Canada
| | - Adrianne L Jenner
- School of Mathematics, Queensland University of Technology, Brisbane, Australia
| | - Morgan Craig
- Department of Mathematics and Statistics, Université de Montréal, Quebec, Canada
- Sainte-Justine University Hospital Research Centre, Montréal, Québec, Canada
| |
Collapse
|
3
|
Athni Hiremath S, Surulescu C. Data driven modeling of pseudopalisade pattern formation. J Math Biol 2023; 87:4. [PMID: 37300719 DOI: 10.1007/s00285-023-01933-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 02/19/2023] [Accepted: 04/29/2023] [Indexed: 06/12/2023]
Abstract
Pseudopalisading is an interesting phenomenon where cancer cells arrange themselves to form a dense garland-like pattern. Unlike the palisade structure, a similar type of pattern first observed in schwannomas by pathologist J.J. Verocay (Wippold et al. in AJNR Am J Neuroradiol 27(10):2037-2041, 2006), pseudopalisades are less organized and associated with a necrotic region at their core. These structures are mainly found in glioblastoma (GBM), a grade IV brain tumor, and provide a way to assess the aggressiveness of the tumor. Identification of the exact bio-mechanism responsible for the formation of pseudopalisades is a difficult task, mainly because pseudopalisades seem to be a consequence of complex nonlinear dynamics within the tumor. In this paper we propose a data-driven methodology to gain insight into the formation of different types of pseudopalisade structures. To this end, we start from a state of the art macroscopic model for the dynamics of GBM, that is coupled with the dynamics of extracellular pH, and formulate a terminal value optimal control problem. Thus, given a specific, observed pseudopalisade pattern, we determine the evolution of parameters (bio-mechanisms) that are responsible for its emergence. Random histological images exhibiting pseudopalisade-like structures are chosen to serve as target pattern. Having identified the optimal model parameters that generate the specified target pattern, we then formulate two different types of pattern counteracting ansatzes in order to determine possible ways to impair or obstruct the process of pseudopalisade formation. This provides the basis for designing active or live control of malignant GBM. Furthermore, we also provide a simple, yet insightful, mechanism to synthesize new pseudopalisade patterns by linearly combining the optimal model parameters responsible for generating different known target patterns. This particularly provides a hint that complex pseudopalisade patterns could be synthesized by a linear combination of parameters responsible for generating simple patterns. Going even further, we ask ourselves if complex therapy approaches can be conceived, such that some linear combination thereof is able to reverse or disrupt simple pseudopalisade patterns; this is investigated with the help of numerical simulations.
Collapse
Affiliation(s)
- Sandesh Athni Hiremath
- Mechanical and Process Engineering, TU Kaiserslautern, Gottlieb-Daimler-Straße 42, 67663, Kaiserslautern, Rhineland-Palatinate, Germany.
| | - Christina Surulescu
- Felix-Klein-Zentrum für Mathematik, TU Kaiserslautern, Paul-Ehrlich-Str. 31, 67663, Kaiserslautern, Rhineland-Palatinate, Germany
| |
Collapse
|
4
|
Nakano H, Shiinoki T, Tanabe S, Nakano T, Takizawa T, Utsunomiya S, Sakai M, Tanabe S, Ohta A, Kaidu M, Nishio T, Ishikawa H. Multicomponent mathematical model for tumor volume calculation with setup error using single-isocenter stereotactic radiotherapy for multiple brain metastases. Phys Eng Sci Med 2023; 46:945-953. [PMID: 36940064 DOI: 10.1007/s13246-023-01241-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 03/06/2023] [Indexed: 03/21/2023]
Abstract
We evaluated the tumor residual volumes considering six degrees-of-freedom (6DoF) patient setup errors in stereotactic radiotherapy (SRT) with multicomponent mathematical model using single-isocenter irradiation for brain metastases. Simulated spherical gross tumor volumes (GTVs) with 1.0 (GTV 1), 2.0 (GTV 2), and 3.0 (GTV 3)-cm diameters were used. The distance between the GTV center and isocenter (d) was set at 0-10 cm. The GTV was simultaneously translated within 0-1.0 mm (T) and rotated within 0°-1.0° (R) in the three axis directions using affine transformation. We optimized the tumor growth model parameters using measurements of non-small cell lung cancer cell lines' (A549 and NCI-H460) growth. We calculated the GTV residual volume at the irradiation's end using the physical dose to the GTV when the GTV size, d, and 6DoF setup error varied. The d-values that satisfy tolerance values (10%, 35%, and 50%) of the GTV residual volume rate based on the pre-irradiation GTV volume were determined. The larger the tolerance value set for both cell lines, the longer the distance to satisfy the tolerance value. In GTV residual volume evaluations based on the multicomponent mathematical model on SRT with single-isocenter irradiation, the smaller the GTV size and the larger the distance and 6DoF setup error, the shorter the distance that satisfies the tolerance value might need to be.
Collapse
Affiliation(s)
- Hisashi Nakano
- Department of Radiation Oncology, Niigata University Medical and Dental Hospital, 1-757 Asahimachi-Dori, Chuo-Ku, Niigata-Shi, Niigata, Japan. .,Department of Medical Physics and Engineering, Osaka University Graduate School of Medicine, 1-7 Yamadaoka, Suita-Shi, Osaka, Japan.
| | - Takehiro Shiinoki
- Department of Radiation Oncology, Yamaguchi University, Minamikogushi 1-1-1 Ube, Yamaguchi, Japan
| | - Satoshi Tanabe
- Department of Radiation Oncology, Niigata University Medical and Dental Hospital, 1-757 Asahimachi-Dori, Chuo-Ku, Niigata-Shi, Niigata, Japan
| | - Toshimichi Nakano
- Department of Radiology and Radiation Oncology, Niigata University Graduate School of Medical and Dental Sciences, 1-757 Asahimachi-Dori, Chuo-Ku, Niigata-Shi, Niigata, Japan
| | - Takeshi Takizawa
- Department of Radiology and Radiation Oncology, Niigata University Graduate School of Medical and Dental Sciences, 1-757 Asahimachi-Dori, Chuo-Ku, Niigata-Shi, Niigata, Japan.,Department of Radiation Oncology, Niigata Neurosurgical Hospital, 3057 Yamada, Nishi-Ku, Niigata-Shi, Niigata, Japan
| | - Satoru Utsunomiya
- Department of Radiological Technology, Niigata University Graduate School of Health Sciences, 2-746 Asahimachi-Dori, Chuo-Ku, Niigata-Shi, Niigata, Japan
| | - Madoka Sakai
- Department of Radiation Oncology, Niigata University Medical and Dental Hospital, 1-757 Asahimachi-Dori, Chuo-Ku, Niigata-Shi, Niigata, Japan
| | - Shunpei Tanabe
- Department of Radiation Oncology, Niigata University Medical and Dental Hospital, 1-757 Asahimachi-Dori, Chuo-Ku, Niigata-Shi, Niigata, Japan
| | - Atsushi Ohta
- Department of Radiation Oncology, Niigata University Medical and Dental Hospital, 1-757 Asahimachi-Dori, Chuo-Ku, Niigata-Shi, Niigata, Japan
| | - Motoki Kaidu
- Department of Radiology and Radiation Oncology, Niigata University Graduate School of Medical and Dental Sciences, 1-757 Asahimachi-Dori, Chuo-Ku, Niigata-Shi, Niigata, Japan
| | - Teiji Nishio
- Department of Medical Physics and Engineering, Osaka University Graduate School of Medicine, 1-7 Yamadaoka, Suita-Shi, Osaka, Japan
| | - Hiroyuki Ishikawa
- Department of Radiology and Radiation Oncology, Niigata University Graduate School of Medical and Dental Sciences, 1-757 Asahimachi-Dori, Chuo-Ku, Niigata-Shi, Niigata, Japan
| |
Collapse
|
5
|
Jørgensen ACS, Hill CS, Sturrock M, Tang W, Karamched SR, Gorup D, Lythgoe MF, Parrinello S, Marguerat S, Shahrezaei V. Data-driven spatio-temporal modelling of glioblastoma. ROYAL SOCIETY OPEN SCIENCE 2023; 10:221444. [PMID: 36968241 PMCID: PMC10031411 DOI: 10.1098/rsos.221444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 02/23/2023] [Indexed: 06/18/2023]
Abstract
Mathematical oncology provides unique and invaluable insights into tumour growth on both the microscopic and macroscopic levels. This review presents state-of-the-art modelling techniques and focuses on their role in understanding glioblastoma, a malignant form of brain cancer. For each approach, we summarize the scope, drawbacks and assets. We highlight the potential clinical applications of each modelling technique and discuss the connections between the mathematical models and the molecular and imaging data used to inform them. By doing so, we aim to prime cancer researchers with current and emerging computational tools for understanding tumour progression. By providing an in-depth picture of the different modelling techniques, we also aim to assist researchers who seek to build and develop their own models and the associated inference frameworks. Our article thus strikes a unique balance. On the one hand, we provide a comprehensive overview of the available modelling techniques and their applications, including key mathematical expressions. On the other hand, the content is accessible to mathematicians and biomedical scientists alike to accommodate the interdisciplinary nature of cancer research.
Collapse
Affiliation(s)
| | - Ciaran Scott Hill
- Department of Neurosurgery, The National Hospital for Neurology and Neurosurgery, London WC1N 3BG, UK
- Samantha Dickson Brain Cancer Unit, UCL Cancer Institute, London WC1E 6DD, UK
| | - Marc Sturrock
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin D02 YN77, Ireland
| | - Wenhao Tang
- Department of Mathematics, Faculty of Natural Sciences, Imperial College London, London SW7 2AZ, UK
| | - Saketh R. Karamched
- Division of Medicine, Centre for Advanced Biomedical Imaging, University College London (UCL), London WC1E 6BT, UK
| | - Dunja Gorup
- Division of Medicine, Centre for Advanced Biomedical Imaging, University College London (UCL), London WC1E 6BT, UK
| | - Mark F. Lythgoe
- Division of Medicine, Centre for Advanced Biomedical Imaging, University College London (UCL), London WC1E 6BT, UK
| | - Simona Parrinello
- Samantha Dickson Brain Cancer Unit, UCL Cancer Institute, London WC1E 6DD, UK
| | - Samuel Marguerat
- Genomics Translational Technology Platform, UCL Cancer Institute, University College London, London WC1E 6DD, UK
| | - Vahid Shahrezaei
- Department of Mathematics, Faculty of Natural Sciences, Imperial College London, London SW7 2AZ, UK
| |
Collapse
|
6
|
Relapsing High—Grade Glioma from Peritumoral Zone: Critical Review of Radiotherapy Treatment Options. Brain Sci 2022; 12:brainsci12040416. [PMID: 35447948 PMCID: PMC9027370 DOI: 10.3390/brainsci12040416] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 03/15/2022] [Accepted: 03/18/2022] [Indexed: 11/17/2022] Open
Abstract
Glioblastoma (GBM) is the most common and aggressive brain tumor in adults, with a median survival of about 15 months. After the prior treatment, GBM tends to relapse within the high dose radiation field, defined as the peritumoral brain zone (PTZ), needing a second treatment. In the present review, the primary role of ionizing radiation in recurrent GBM is discussed, and the current literature knowledge about the different radiation modalities, doses and fractionation options at our disposal is summarized. Therefore, the focus is on the necessity of tailoring the treatment approach to every single patient and using radiomics and PET/MRI imaging to have a relatively good outcome and avoid severe toxicity. The use of charged particle therapy and radiosensitizers to overcome GBM radioresistance is considered, even if further studies are necessary to evaluate the effectiveness in the setting of reirradiation.
Collapse
|
7
|
Ghaderi N, Jung J, Brüningk SC, Subramanian A, Nassour L, Peacock J. A Century of Fractionated Radiotherapy: How Mathematical Oncology Can Break the Rules. Int J Mol Sci 2022; 23:ijms23031316. [PMID: 35163240 PMCID: PMC8836217 DOI: 10.3390/ijms23031316] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/17/2022] [Accepted: 01/18/2022] [Indexed: 02/07/2023] Open
Abstract
Radiotherapy is involved in 50% of all cancer treatments and 40% of cancer cures. Most of these treatments are delivered in fractions of equal doses of radiation (Fractional Equivalent Dosing (FED)) in days to weeks. This treatment paradigm has remained unchanged in the past century and does not account for the development of radioresistance during treatment. Even if under-optimized, deviating from a century of successful therapy delivered in FED can be difficult. One way of exploring the infinite space of fraction size and scheduling to identify optimal fractionation schedules is through mathematical oncology simulations that allow for in silico evaluation. This review article explores the evidence that current fractionation promotes the development of radioresistance, summarizes mathematical solutions to account for radioresistance, both in the curative and non-curative setting, and reviews current clinical data investigating non-FED fractionated radiotherapy.
Collapse
Affiliation(s)
- Nima Ghaderi
- Department of Biomedical Engineering, University of Minnesota Twin Cities, Minneapolis, MN 55455, USA; (N.G.); (J.J.)
| | - Joseph Jung
- Department of Biomedical Engineering, University of Minnesota Twin Cities, Minneapolis, MN 55455, USA; (N.G.); (J.J.)
| | - Sarah C. Brüningk
- Machine Learning & Computational Biology Lab, Department of Biosystems Science and Engineering, ETH Zurich, 4058 Basel, Switzerland;
- Swiss Institute for Bioinformatics (SIB), 1015 Lausanne, Switzerland
| | - Ajay Subramanian
- Department of Radiation Oncology, Stanford University, Stanford, CA 94305, USA;
| | - Lauren Nassour
- Department of Radiation Oncology, University of Alabama Birmingham, Birmingham, AL 35205, USA;
| | - Jeffrey Peacock
- Department of Radiation Oncology, University of Alabama Birmingham, Birmingham, AL 35205, USA;
- Correspondence:
| |
Collapse
|