1
|
Pereira J, Rios T, Amorim J, Faria-Reis A, de Almeida E, Neves M, Santos-Araújo S, Selim L, Bertuci F, Silva MB, Onofre R, Brandão M, Moraes B, Walter-Nuno AB, Logullo C, Paiva-Silva GO, Gondim KC, Ramos I. Functional characterization of vitellogenin unveils novel roles in RHBP uptake and lifespan regulation in the insect vector Rhodnius prolixus. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2025; 180:104301. [PMID: 40089120 DOI: 10.1016/j.ibmb.2025.104301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 02/17/2025] [Accepted: 03/11/2025] [Indexed: 03/17/2025]
Abstract
In insects, vitellogenesis plays a critical role in providing the energy reserves needed for embryonic development as it ensures the accumulation of yolk in the oocytes. Vitellogenin (Vg), the precursor to vitellin (Vt), is primarily synthesized in the fat body of females and transported to the oocytes via receptor-mediated endocytosis. In Rhodnius prolixus, a key vector of Chagas disease, two Vg genes, Vg1 and Vg2, were characterized. These genes share 65 % amino acid identity and present the conserved Vitellogenin_N, DUF1943, and VWD domains typical of Vg proteins across various species. We found that Vg1 is expressed at significantly higher levels than Vg2 in adult females. Still, the expression of both isoforms was also detected in organs such as the flight muscle, midgut, and ovary, as well as in males and nymphs. RNAi-mediated knockdown of Vg1 and Vg2 in adult females resulted in the production of yolk-depleted eggs with drastically reduced levels of Vg and RHBP, the second most import yolk protein in this species. Despite regular oviposition rates, most of these eggs were inviable, highlighting the essential role of Vg and RHBP in embryo development. Although Vg expression was detected in adult males, the mating of Vg-knockdown males with wild-type females did not impact oviposition or egg viability, indicating that male Vg is not crucial for oogenesis in this species. Interestingly, Vg knockdown increased lifespan for both males and females, suggesting additional physiological functions beyond reproduction. These findings reveal the importance of Vg in oogenesis and embryonic development in R. prolixus while also suggesting potential non-reproductive roles of Vg in adult insect physiology.
Collapse
Affiliation(s)
- Jéssica Pereira
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Brazil
| | - Thamara Rios
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Brazil
| | - Juliana Amorim
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Brazil
| | - Allana Faria-Reis
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Brazil
| | - Elisa de Almeida
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Brazil
| | - Matheus Neves
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Brazil
| | - Samara Santos-Araújo
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Brazil
| | - Lukas Selim
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Brazil
| | - Felipe Bertuci
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Brazil
| | - Marcyellen B Silva
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Brazil
| | - Raquel Onofre
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Brazil
| | - Mellisia Brandão
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Brazil
| | - Bruno Moraes
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Brazil
| | - Ana Beatriz Walter-Nuno
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Brazil
| | - Carlos Logullo
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Brazil; Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular/CNPq, Brazil
| | - Gabriela O Paiva-Silva
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Brazil; Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular/CNPq, Brazil
| | - Katia C Gondim
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Brazil; Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular/CNPq, Brazil
| | - Isabela Ramos
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Brazil; Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular/CNPq, Brazil.
| |
Collapse
|
2
|
Liu X, Qiao X, Yu S, Li Y, Wu S, Liu J, Wang L, Song L. The DUF1943 and VWD domains endow Vitellogenin from Crassostrea gigas with the agglutination and inhibition ability to microorganism. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2023; 143:104679. [PMID: 36921701 DOI: 10.1016/j.dci.2023.104679] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 03/07/2023] [Accepted: 03/09/2023] [Indexed: 06/18/2023]
Abstract
Vitellogenin (Vg) is the major precursor of the egg-yolk proteins, which mainly acts as an energy reserve molecule for providing nutrients during embryonic development. Vg also plays an immune function in vertebrates such as fish, but there are few studies on the immune function of Vg in invertebrates. In the present study, a Vg homologue (CgVg) was identified and characterized in oyster Crassostrea gigas. There are three domains in the CgVg protein, including a Vitellogenin_N domain, a domain of unknown function 1943 (DUF1943) and a von Willebrand factor type D domain (VWD). The mRNA transcripts of CgVg were detected in all tested tissues with high expression in the gonad, hepatopancreas and haemocytes, which was 466.29-, 117.15- and 57.49-fold (p < 0.01) of that in adductor muscle, respectively. After Vibrio splendidus stimulation, the mRNA expression level of CgVg in haemocytes increased significantly at 6, 12 and 24 h, which was 1.97-, 3.58- and 1.3-fold (p < 0.01) of that in the seawater group, respectively. The immunofluorescence assay showed that positive signals of CgVg protein were mainly located at the cytoplasm of haemocytes. The recombinant protein of DUF1943 domain (rDUF1943) and VWD domain (rVWD) was able to bind lipopolysaccharide (LPS), mannose (MAN), peptidoglycan (PGN) and poly (I:C), as well as Gram-positive bacteria (Staphylococcus aureus and Micrococcus luteus), Gram-negative bacteria (Escherichia coli and V. splendidus) and fungi (Pichia pastoris). rDUF1943 exhibited stronger agglutination activity towards S. aureus, M. luteus, E. coli, V. splendidus and P. pastoris, while agglutination was only observed in the rVWD group towards P. pastoris. The rVWD inhibited the growth of E. coli, S. aureus and V. splendidus, while no antibacterial activity was detected in rDUF1943 group. Collectively, CgVg not only functioned as a pattern recognition receptor (PRR) to bind various microorganisms and PAMPs, but also as an immune effector participating in the clearance of invaders, in which DUF1943 and VWD domain were mainly responsible for agglutinating and inhibiting microorganism respectively.
Collapse
Affiliation(s)
- Xiyang Liu
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China
| | - Xue Qiao
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China.
| | - Simiao Yu
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China
| | - Youjing Li
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China
| | - Shasha Wu
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China
| | - Jinyu Liu
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China
| | - Lingling Wang
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Functional Laboratory of Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266235, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China
| | - Linsheng Song
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Functional Laboratory of Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266235, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China.
| |
Collapse
|
3
|
Hua D, Li X, Yuan J, Tao M, Zhang K, Zheng X, Wan Y, Gui L, Zhang Y, Wu Q. Fitness cost of spinosad resistance related to vitellogenin in Frankliniella occidentalis (Pergande). PEST MANAGEMENT SCIENCE 2023; 79:771-780. [PMID: 36264641 DOI: 10.1002/ps.7253] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 09/20/2022] [Accepted: 10/20/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND The western flower thrips Frankliniella occidentalis, a worldwide agricultural pest, has developed resistance to an array of insecticides. Spinosad resistance confers an apparent fitness cost in F. occidentalis. In the present study, we compared the reproductive capacities, ovary development, and the expression of the vitellogenin (Vg) gene in spinosad-susceptible (Ivf03) and -resistant (NIL-R) near isogenetic lines of F. occidentalis in order to clarify the reason for the fitness cost in spinosad resistance. RESULTS The NIL-R strain exhibited a 17.9% decrease in fecundity (eggs laid per female) as compared to the Ivf03 strain, and the ovariole was significantly shortened by 2.8% in the NIL-R strain relative to the Ivf03 strain. Compared to the Ivf03 strain, the expression levels of Vg mRNA and protein were downregulated by 33.7% and 32.9% in the NIL-R strain, respectively. Moreover, interference with the Vg gene significantly reduced the expression levels of Vg mRNA and protein, and decreased ovariole length, survival rates and the fecundity of both strains. CONCLUSION The results indicate that the downregulated expression of Vg may contribute to the reduction of ovariole length and consequently to a fitness cost in spinosad-resistant F. occidentalis. The results not only increase our understanding of the evolution of insecticide resistance, but also could contribute to the formulation of control strategy of F. occidentalis. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Dengke Hua
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
- Institute of Agricultural Quality Standards and Testing Technology Research, Hubei Academy of Agricultural Sciences/Hubei Key Laboratory of Nutritional Quality and Safety of Agro Products, Wuhan, China
| | - Xiaoyu Li
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
- Hubei Biopesticide Engineering Research Centre, Wuhan, China
| | - Jiangjiang Yuan
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Min Tao
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Kun Zhang
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xiaobin Zheng
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yanran Wan
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Lianyou Gui
- Department of Entomology, College of Agriculture, Yangtze University, Jingzhou, China
| | - Youjun Zhang
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
- Department of Entomology, College of Agriculture, Yangtze University, Jingzhou, China
| | - Qingjun Wu
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
4
|
Ribeiro TP, Vasquez DDN, Macedo LLP, Lourenço-Tessutti IT, Valença DC, Oliveira-Neto OB, Paes-de-Melo B, Rodrigues-Silva PL, Firmino AAP, Basso MF, Lins CBJ, Neves MR, Moura SM, Tripode BMD, Miranda JE, Silva MCM, Grossi-de-Sa MF. Stabilized Double-Stranded RNA Strategy Improves Cotton Resistance to CBW ( Anthonomus grandis). Int J Mol Sci 2022; 23:13713. [PMID: 36430188 PMCID: PMC9691246 DOI: 10.3390/ijms232213713] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/19/2022] [Accepted: 07/20/2022] [Indexed: 11/11/2022] Open
Abstract
Cotton is the most important crop for fiber production worldwide. However, the cotton boll weevil (CBW) is an insect pest that causes significant economic losses in infested areas. Current control methods are costly, inefficient, and environmentally hazardous. Herein, we generated transgenic cotton lines expressing double-stranded RNA (dsRNA) molecules to trigger RNA interference-mediated gene silencing in CBW. Thus, we targeted three essential genes coding for chitin synthase 2, vitellogenin, and ecdysis-triggering hormone receptor. The stability of expressed dsRNAs was improved by designing a structured RNA based on a viroid genome architecture. We transformed cotton embryos by inserting a promoter-driven expression cassette that overexpressed the dsRNA into flower buds. The transgenic cotton plants were characterized, and positive PCR transformed events were detected with an average heritability of 80%. Expression of dsRNAs was confirmed in floral buds by RT-qPCR, and the T1 cotton plant generation was challenged with fertilized CBW females. After 30 days, data showed high mortality (around 70%) in oviposited yolks. In adult insects fed on transgenic lines, chitin synthase II and vitellogenin showed reduced expression in larvae and adults, respectively. Developmental delays and abnormalities were also observed in these individuals. Our data remark on the potential of transgenic cotton based on a viroid-structured dsRNA to control CBW.
Collapse
Affiliation(s)
- Thuanne P. Ribeiro
- Embrapa Genetic Resources and Biotechnology, Brasilia 70770-917, DF, Brazil
- Biotechnology and Molecular Biology Department, Federal University of Brasilia (UnB), Brasilia 70910-900, DF, Brazil
| | - Daniel D. N. Vasquez
- Embrapa Genetic Resources and Biotechnology, Brasilia 70770-917, DF, Brazil
- Genetic and Molecular Biology Department, Catholic University of Brasilia (UCB), Brasilia 71966-700, DF, Brazil
| | - Leonardo L. P. Macedo
- Embrapa Genetic Resources and Biotechnology, Brasilia 70770-917, DF, Brazil
- National Institute of Science and Technology (INCT Plant Stress Biotech), Embrapa, Brasilia 70770-917, DF, Brazil
| | - Isabela T. Lourenço-Tessutti
- Embrapa Genetic Resources and Biotechnology, Brasilia 70770-917, DF, Brazil
- National Institute of Science and Technology (INCT Plant Stress Biotech), Embrapa, Brasilia 70770-917, DF, Brazil
| | - David C. Valença
- Embrapa Genetic Resources and Biotechnology, Brasilia 70770-917, DF, Brazil
| | - Osmundo B. Oliveira-Neto
- Embrapa Genetic Resources and Biotechnology, Brasilia 70770-917, DF, Brazil
- National Institute of Science and Technology (INCT Plant Stress Biotech), Embrapa, Brasilia 70770-917, DF, Brazil
- Biochemistry and Molecular Biology Department, Integrated Faculties of the Educational Union of Planalto Central, Brasilia 70675-760, DF, Brazil
| | - Bruno Paes-de-Melo
- Embrapa Genetic Resources and Biotechnology, Brasilia 70770-917, DF, Brazil
- National Institute of Science and Technology (INCT Plant Stress Biotech), Embrapa, Brasilia 70770-917, DF, Brazil
| | | | - Alexandre A. P. Firmino
- Embrapa Genetic Resources and Biotechnology, Brasilia 70770-917, DF, Brazil
- Max Planck Institute Molecular Plant Physiol, 14476 Potsdam, Germany
| | - Marcos F. Basso
- Embrapa Genetic Resources and Biotechnology, Brasilia 70770-917, DF, Brazil
- National Institute of Science and Technology (INCT Plant Stress Biotech), Embrapa, Brasilia 70770-917, DF, Brazil
| | - Camila B. J. Lins
- Embrapa Genetic Resources and Biotechnology, Brasilia 70770-917, DF, Brazil
| | - Maysa R. Neves
- Embrapa Genetic Resources and Biotechnology, Brasilia 70770-917, DF, Brazil
| | - Stefanie M. Moura
- Embrapa Genetic Resources and Biotechnology, Brasilia 70770-917, DF, Brazil
- National Institute of Science and Technology (INCT Plant Stress Biotech), Embrapa, Brasilia 70770-917, DF, Brazil
| | | | | | - Maria C. M. Silva
- Embrapa Genetic Resources and Biotechnology, Brasilia 70770-917, DF, Brazil
- National Institute of Science and Technology (INCT Plant Stress Biotech), Embrapa, Brasilia 70770-917, DF, Brazil
| | - Maria F. Grossi-de-Sa
- Embrapa Genetic Resources and Biotechnology, Brasilia 70770-917, DF, Brazil
- Genetic and Molecular Biology Department, Catholic University of Brasilia (UCB), Brasilia 71966-700, DF, Brazil
- National Institute of Science and Technology (INCT Plant Stress Biotech), Embrapa, Brasilia 70770-917, DF, Brazil
| |
Collapse
|
5
|
Retraction: RNAi-mediated silencing of vitellogenin gene curtails oogenesis in the almond moth Cadra cautella. PLoS One 2022; 17:e0275947. [PMID: 36269703 PMCID: PMC9586344 DOI: 10.1371/journal.pone.0275947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023] Open
|
6
|
Chen D, Han HL, Li WJ, Wang JJ, Wei D. Expression and Role of Vitellogenin Genes in Ovarian Development of Zeugodacus cucurbitae. INSECTS 2022; 13:insects13050452. [PMID: 35621787 PMCID: PMC9143374 DOI: 10.3390/insects13050452] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 05/03/2022] [Accepted: 05/09/2022] [Indexed: 02/04/2023]
Abstract
Vitellogenin (Vg) genes encode the major egg yolk protein precursor in arthropods. In this study, four Vgs were identified in Zeugodacus cucurbitae (Coquillett). Sequence analysis showed that four ZcVgs had the conserved Vg domain. Phylogenetic analysis indicated that four ZcVgs were homologous to the Vgs of Tephritidae insects. The temporal and spatial expression patterns of ZcVgs were analyzed by quantitative real-time polymerase chain reaction (RT-qPCR), and the four ZcVgs showed high expression levels in female adults, especially in the fat body. The expression of ZcVg1 and ZcVg3 was down-regulated by a low dosage (0.5 μg) of 20-hydroxyecdysone (20E), and ZcVg2, ZcVg3, and ZcVg4 were up-regulated by a high dosage (1.0 and 2.0 μg) of 20E. The expression of ZcVg1 and ZcVg2 was up-regulated by 5 μg of juvenile hormone (JH), while all of the ZcVgs were down-regulated by a low and high dosage of JH. Expression of ZcVgs was down-regulated after 24 h of starvation and recovered to normal after nutritional supplementation. After micro-injection of the gene-specific double-stranded RNA, the ZcVgs’ expression was significantly suppressed, and ovarian development was delayed in Z. cucurbitae females. The results indicate that RNA interference of reproduction-related genes is a potential pest control method that works by manipulating female fertility.
Collapse
Affiliation(s)
- Dong Chen
- Chongqing Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400715, China; (D.C.); (H.-L.H.); (W.-J.L.); (J.-J.W.)
- Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China
| | - Hong-Liang Han
- Chongqing Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400715, China; (D.C.); (H.-L.H.); (W.-J.L.); (J.-J.W.)
- Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China
| | - Wei-Jun Li
- Chongqing Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400715, China; (D.C.); (H.-L.H.); (W.-J.L.); (J.-J.W.)
- Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China
| | - Jin-Jun Wang
- Chongqing Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400715, China; (D.C.); (H.-L.H.); (W.-J.L.); (J.-J.W.)
- Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China
| | - Dong Wei
- Chongqing Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400715, China; (D.C.); (H.-L.H.); (W.-J.L.); (J.-J.W.)
- Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China
- Correspondence: ; Tel.: +86-23-6825-0653
| |
Collapse
|
7
|
Rasool KG, Mehmood K, Tufail M, Husain M, Alwaneen WS, Aldawood AS. Silencing of vitellogenin gene contributes to the promise of controlling red palm weevil, Rhynchophorus ferrugineus (Olivier). Sci Rep 2021; 11:21695. [PMID: 34737372 PMCID: PMC8568968 DOI: 10.1038/s41598-021-01159-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 10/19/2021] [Indexed: 01/09/2023] Open
Abstract
Red palm weevil [Rhynchophorus ferrugineus (Olivier)], is native to South Asia and expanding its distribution range globally. Recent invasions of red palm weevil around the world, including Saudi Arabia, has become a global constraint for the production of palm species. Although, several control measures have been tested, none of them seemed successful against this invasive species. Therefore, we focused on silencing the reproduction control gene vitellogenin (Vg) based on RNA interference (RNAi) strategy for its possible application in the management of R. ferrugineus. The Vg is a major yolk protein precursor critical for oogenesis. To do this, fat body transcriptome of R. ferrugineus female adults was sequenced, which provided partial Vg gene transcript (FPKM 5731.60). A complete RfVg gene transcript of 5504 bp encoding 1787 amino acids was then sequenced using RCAE-PCR strategy and characterized. Phylogenetic analysis suggested that RfVg has closer ancestry to the coleopteran insects. The RfVg-based RNAi significantly suppressed the expressions of Vg gene. The 15, 20 and 25 days post-injection periods suppressed Vg expressions by 95, 96.6 and 99%, respectively. The suppressed Vg expressions resulted in the dramatic failure of Vg protein expression, which caused atrophied ovaries or no oogenesis and ultimately eggs were not hatched. These results suggest that knockdown of Vg gene involved in R. ferrugineus reproduction is a promising target for RNAi-based management of R. ferrugineus.
Collapse
Affiliation(s)
- Khawaja G Rasool
- Plant Protection Department, College of Food and Agriculture Sciences, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Khalid Mehmood
- Plant Protection Department, College of Food and Agriculture Sciences, King Saud University, Riyadh, 11451, Saudi Arabia
- Institute of Plant Protection, Muhammad Nawaz Shareef (MNS) University of Agriculture, Multan, 60000, Punjab, Pakistan
| | - Muhammad Tufail
- Plant Protection Department, College of Food and Agriculture Sciences, King Saud University, Riyadh, 11451, Saudi Arabia
- Ghazi University, Dera Ghazi Khan, Punjab, Pakistan
| | - Mureed Husain
- Plant Protection Department, College of Food and Agriculture Sciences, King Saud University, Riyadh, 11451, Saudi Arabia.
| | - Waleed S Alwaneen
- National Center for Agricultural Technology (NCAT), King Abdulaziz City for Science and Technology (KACST), Riyadh, Saudi Arabia
| | - Abdulrahman S Aldawood
- Plant Protection Department, College of Food and Agriculture Sciences, King Saud University, Riyadh, 11451, Saudi Arabia
| |
Collapse
|
8
|
Al-Qahtani WH. The value of blue-green algae (Spirulina platensis) as a nutritive supplement and toxicant against almond moth [Cadra cautella (Lepidoptera: Pyralidae)]. PLoS One 2021; 16:e0259115. [PMID: 34699561 PMCID: PMC8547640 DOI: 10.1371/journal.pone.0259115] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Accepted: 10/12/2021] [Indexed: 12/05/2022] Open
Abstract
Blue-green algae, Spirulina platensis is a well-known algal formulation known for its beneficial effects on the growth and development in several types of organisms. Although it is used as a food supplement, it possesses significant toxic effects on growth and development of organisms. This study assessed the positive/negative impacts of S. platensis on almond moth, Cadra cautella (almond moth) that is a serious pest of date fruits and other grains under laboratory conditions. The S. platensis powder were mixed with diet and newly hatched C. cautella larvae were fed. The larvae were observed on alternate days to record the data. The diet was changed once a week. The S. platensis proved very good nutrition supplement at lower dose. Whereas, moderate and high mortality was noted for 5 and 10% formulations, respectively. Moreover, larval span was significantly altered by different formulations and lower formulation (1%) resulted in shorter larval period compared to the rest of the formulations. Although 33% mortality was recorded under 5% S. platensis formulation, however, the larvae which reached to adult stage, copulated, and females laid more eggs. Furthermore, the highest mortality (90%) was observed under 10% S. platensis formulation and a few larvae reached adult stage; thus, no data on pupal period and reproductive traits was recorded for this formulation. These findings proved that S. platensis can be used as nutritional supplement as well as a toxic substance to manage C. cautella in date storage. However, future studies on this are needed to reach concrete conclusions.
Collapse
Affiliation(s)
- Wahidah H. Al-Qahtani
- Department of Food Sciences and Nutrition, College of Food and Agriculture Sciences, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|