1
|
Verleysen L, Depecker J, Bollen R, Asimonyio J, Hatangi Y, Kambale JL, Mwanga Mwanga I, Ebele T, Dhed'a B, Stoffelen P, Ruttink T, Vandelook F, Honnay O. Crop-to-wild gene flow in wild coffee species: the case of Coffea canephora in the Democratic Republic of the Congo. ANNALS OF BOTANY 2024; 133:917-930. [PMID: 38441303 PMCID: PMC11089259 DOI: 10.1093/aob/mcae034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 03/01/2024] [Indexed: 05/14/2024]
Abstract
BACKGROUND AND AIMS Plant breeders are increasingly turning to crop wild relatives (CWRs) to ensure food security in a rapidly changing environment. However, CWR populations are confronted with various human-induced threats, including hybridization with their nearby cultivated crops. This might be a particular problem for wild coffee species, which often occur near coffee cultivation areas. Here, we briefly review the evidence for wild Coffea arabica (cultivated as Arabica coffee) and Coffea canephora (cultivated as Robusta coffee) and then focused on C. canephora in the Yangambi region in the Democratic Republic of the Congo. There, we examined the geographical distribution of cultivated C. canephora and the incidence of hybridization between cultivated and wild individuals within the rainforest. METHODS We collected 71 C. canephora individuals from home gardens and 12 C. canephora individuals from the tropical rainforest in the Yangambi region and genotyped them using genotyping-by-sequencing (GBS). We compared the fingerprints with existing GBS data from 388 C. canephora individuals from natural tropical rainforests and the INERA Coffee Collection, a Robusta coffee field gene bank and the most probable source of cultivated genotypes in the area. We then established robust diagnostic fingerprints that genetically differentiate cultivated from wild coffee, identified cultivated-wild hybrids and mapped their geographical position in the rainforest. KEY RESULTS We identified cultivated genotypes and cultivated-wild hybrids in zones with clear anthropogenic activity, and where cultivated C. canephora in home gardens may serve as a source for crop-to-wild gene flow. We found relatively few hybrids and backcrosses in the rainforests. CONCLUSIONS The cultivation of C. canephora in close proximity to its wild gene pool has led to cultivated genotypes and cultivated-wild hybrids appearing within the natural habitats of C. canephora. Yet, given the high genetic similarity between the cultivated and wild gene pool, together with the relatively low incidence of hybridization, our results indicate that the overall impact in terms of risk of introgression remains limited so far.
Collapse
Affiliation(s)
- Lauren Verleysen
- Division of Ecology, Evolution and Biodiversity Conservation, KU Leuven, Leuven, Belgium
- Plant Sciences Unit, Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), Melle, Belgium
| | - Jonas Depecker
- Division of Ecology, Evolution and Biodiversity Conservation, KU Leuven, Leuven, Belgium
- Meise Botanic Garden, Meise, Belgium
- KU Leuven Plant Institute, Leuven, Belgium
| | - Robrecht Bollen
- Division of Ecology, Evolution and Biodiversity Conservation, KU Leuven, Leuven, Belgium
- Meise Botanic Garden, Meise, Belgium
| | - Justin Asimonyio
- Centre de Surveillance de la Biodiversité et Université de Kisangani, Kisangani, DR Congo
| | - Yves Hatangi
- Meise Botanic Garden, Meise, Belgium
- Université de Kisangani, Kisangani, DR Congo
- Liège University, Gembloux Agro-Bio Tech, Gembloux, Belgium
| | - Jean-Léon Kambale
- Centre de Surveillance de la Biodiversité et Université de Kisangani, Kisangani, DR Congo
| | | | - Thsimi Ebele
- Institut National des Etudes et Recherches Agronomique, Yangambi, DR Congo
| | | | | | - Tom Ruttink
- Plant Sciences Unit, Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), Melle, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
| | - Filip Vandelook
- Division of Ecology, Evolution and Biodiversity Conservation, KU Leuven, Leuven, Belgium
- Meise Botanic Garden, Meise, Belgium
| | - Olivier Honnay
- Division of Ecology, Evolution and Biodiversity Conservation, KU Leuven, Leuven, Belgium
- KU Leuven Plant Institute, Leuven, Belgium
| |
Collapse
|
2
|
Lachenmeier DW, Montagnon C. Convention on Biological Diversity (CBD) and the Nagoya Protocol: Implications and Compliance Strategies for the Global Coffee Community. Foods 2024; 13:254. [PMID: 38254555 PMCID: PMC10814485 DOI: 10.3390/foods13020254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 01/09/2024] [Accepted: 01/11/2024] [Indexed: 01/24/2024] Open
Abstract
The Nagoya Protocol on Access and Benefit-sharing (ABS) of the Convention on Biological Diversity (CBD) is a fundamental international agreement that plays a crucial role in the protection and equitable utilization of plant genetic resources. While this agreement is essential for conservation and sustainable use, it presents specific challenges to coffee research and industry. One major issue is the requirement to obtain prior informed consent (PIC) from the source country or community, which can be a complex and time-consuming process, especially in regions with limited governance capacity. Additionally, the mandates of this agreement necessitate benefit-sharing with the source community, a requirement that poses implementation challenges, particularly for small businesses or individual researchers. Despite these challenges, the importance of the Nagoya Protocol in the coffee sector cannot be overstated. It contributes significantly to the conservation of coffee genetic resources and the sustainable utilization of these resources, ensuring fair distribution of benefits. To address the complexities presented by this international framework, coffee researchers and industry need to engage proactively with source countries and communities. This includes developing clear and equitable benefit-sharing and implementing strategies for compliance. This article explores the impact of the Nagoya Protocol on the coffee industry, particularly emphasizing the need for balancing scientific investigation with the ethical considerations of resource sharing. It also discusses practical strategies for navigating the complexities of this agreement, including research focused on authenticity control and the challenges in conducting large-scale coffee studies. The conclusion underscores the potential for international collaboration, particularly through platforms like the International Coffee Organization (ICO), to harmonize research activities with the ethical imperatives of the Nagoya Protocol.
Collapse
Affiliation(s)
- Dirk W. Lachenmeier
- Chemisches und Veterinäruntersuchungsamt (CVUA) Karlsruhe, Weissenburger Strasse 3, 76187 Karlsruhe, Germany
| | | |
Collapse
|
3
|
Depecker J, Verleysen L, Asimonyio JA, Hatangi Y, Kambale JL, Mwanga Mwanga I, Ebele T, Dhed'a B, Bawin Y, Staelens A, Stoffelen P, Ruttink T, Vandelook F, Honnay O. Genetic diversity and structure in wild Robusta coffee (Coffea canephora A. Froehner) populations in Yangambi (DR Congo) and their relation to forest disturbance. Heredity (Edinb) 2023; 130:145-153. [PMID: 36596880 PMCID: PMC9981769 DOI: 10.1038/s41437-022-00588-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 12/14/2022] [Accepted: 12/14/2022] [Indexed: 01/05/2023] Open
Abstract
Degradation and regeneration of tropical forests can strongly affect gene flow in understorey species, resulting in genetic erosion and changes in genetic structure. Yet, these processes remain poorly studied in tropical Africa. Coffea canephora is an economically important species, found in the understorey of tropical rainforests of Central and West Africa, and the genetic diversity harboured in its wild populations is vital for sustainable coffee production worldwide. Here, we aimed to quantify genetic diversity, genetic structure, and pedigree relations in wild C. canephora populations, and we investigated associations between these descriptors and forest disturbance and regeneration. Therefore, we sampled 256 C. canephora individuals within 24 plots across three forest categories in Yangambi (DR Congo), and used genotyping-by-sequencing to identify 18,894 SNPs. Overall, we found high genetic diversity, and no evidence of genetic erosion in C. canephora in disturbed old-growth forest, as compared to undisturbed old-growth forest. In addition, an overall heterozygosity excess was found in all populations, which was expected for a self-incompatible species. Genetic structure was mainly a result of isolation-by-distance, reflecting geographical location, with low to moderate relatedness at finer scales. Populations in regrowth forest had lower allelic richness than populations in old-growth forest and were characterised by a lower inter-individual relatedness and a lack of isolation-by-distance, suggesting that they originated from different neighbouring populations and were subject to founder effects. Wild Robusta coffee populations in the study area still harbour high levels of genetic diversity, yet careful monitoring of their response to ongoing forest degradation remains required.
Collapse
Affiliation(s)
- Jonas Depecker
- Division of Ecology, Evolution and Biodiversity Conservation, KU Leuven, Leuven, Belgium.
- Meise Botanic Garden, Meise, Belgium.
- KU Leuven Plant Institute, Leuven, Belgium.
| | - Lauren Verleysen
- Division of Ecology, Evolution and Biodiversity Conservation, KU Leuven, Leuven, Belgium.
- Plant Sciences Unit, Flanders Research Institute for Agriculture, Fisheries and Food, Melle, Belgium.
| | - Justin A Asimonyio
- Centre de Surveillance de la Biodiversité et Université de Kisangani, Kisangani, Democratic Republic of the Congo
| | - Yves Hatangi
- Meise Botanic Garden, Meise, Belgium
- Université de Kisangani, Kisangani, Democratic Republic of the Congo
| | - Jean-Léon Kambale
- Centre de Surveillance de la Biodiversité et Université de Kisangani, Kisangani, Democratic Republic of the Congo
| | - Ithe Mwanga Mwanga
- Centre de Recherche en Science Naturelles, Lwiro, Democratic Republic of the Congo
| | - Tshimi Ebele
- Institut National des Etudes et Recherches, Agronomique, Democratic Republic of the Congo
| | - Benoit Dhed'a
- Université de Kisangani, Kisangani, Democratic Republic of the Congo
| | - Yves Bawin
- Division of Ecology, Evolution and Biodiversity Conservation, KU Leuven, Leuven, Belgium
- Plant Sciences Unit, Flanders Research Institute for Agriculture, Fisheries and Food, Melle, Belgium
| | - Ariane Staelens
- Plant Sciences Unit, Flanders Research Institute for Agriculture, Fisheries and Food, Melle, Belgium
| | | | - Tom Ruttink
- Plant Sciences Unit, Flanders Research Institute for Agriculture, Fisheries and Food, Melle, Belgium
| | - Filip Vandelook
- Meise Botanic Garden, Meise, Belgium
- KU Leuven Plant Institute, Leuven, Belgium
| | - Olivier Honnay
- Division of Ecology, Evolution and Biodiversity Conservation, KU Leuven, Leuven, Belgium
- KU Leuven Plant Institute, Leuven, Belgium
| |
Collapse
|
4
|
Davis AP, Kiwuka C, Faruk A, Mulumba J, Kalema J. A review of the indigenous coffee resources of Uganda and their potential for coffee sector sustainability and development. FRONTIERS IN PLANT SCIENCE 2023; 13:1057317. [PMID: 36874918 PMCID: PMC9982753 DOI: 10.3389/fpls.2022.1057317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 12/01/2022] [Indexed: 06/18/2023]
Abstract
Uganda is a major global coffee exporter and home to key indigenous (wild) coffee resources. A comprehensive survey of Uganda's wild coffee species was undertaken more than 80 years ago (in 1938) and thus a contemporary evaluation is required, which is provided here. We enumerate four indigenous coffee species for Uganda: Coffea canephora, C. eugenioides, C. liberica (var. dewevrei) and C. neoleroyi. Based on ground point data from various sources, survey of natural forests, and literature reviews we summarise taxonomy, geographical distribution, ecology, conservation, and basic climate characteristics, for each species. Using literature review and farm survey we also provide information on the prior and exiting uses of Uganda's wild coffee resources for coffee production. Three of the indigenous species (excluding C. neoleroyi) represent useful genetic resources for coffee crop development (e.g. via breeding, or selection), including: adaptation to a changing climate, pest and disease resistance, improved agronomic performance, and market differentiation. Indigenous C. canephora has already been pivotal in the establishment and sustainability of the robusta coffee sector in Uganda and worldwide, and has further potential for the development of this crop species. Coffea liberica var. dewevrei (excelsa coffee) is emerging as a commercially viable coffee crop plant in its own right, and may offer substantial potential for lowland coffee farmers, i.e. in robusta coffee growing areas. It may also provide useful stock material for the grafting of robusta and Arabica coffee, and possibly other species. Preliminary conservation assessments indicate that C. liberica var. dewevrei and C. neoleroyi are at risk of extinction at the country-level (Uganda). Adequate protection of Uganda's humid forests, and thus its coffee natural capital, is identified as a conservation priority for Uganda and the coffee sector in general.
Collapse
Affiliation(s)
- Aaron P. Davis
- Crops & Global Change, Royal Botanic Gardens, Kew, Richmond, Surrey, United Kingdom
| | - Catherine Kiwuka
- Plant Genetic Resources Centre, National Agricultural Research Organization, Entebbe, Uganda
| | - Aisyah Faruk
- Partnerships (Conservation), Millennium Seed Bank (Royal Botanic Gardens, Kew), Wakehurst, Sussex, United Kingdom
| | - John Mulumba
- Plant Genetic Resources Centre, National Agricultural Research Organization, Entebbe, Uganda
| | - James Kalema
- Department of Plant Sciences, Microbiology and Biotechnology, College of Natural Sciences, Makerere University, Kampala, Uganda
| |
Collapse
|
5
|
Kiwuka C, Vos J, Douma JC, Musoli P, Mulumba JW, Poncet V, Anten NPR. Intraspecific variation in growth response to drought stress across geographic locations and genetic groups in Coffea canephora. Ecol Evol 2023; 13:e9715. [PMID: 36620399 PMCID: PMC9810788 DOI: 10.1002/ece3.9715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 12/15/2022] [Accepted: 12/19/2022] [Indexed: 01/05/2023] Open
Abstract
Uganda lies within the drier end of the natural distribution range of Coffea canephora and contains unexplored genetic material that could be drought-adapted and useful for developing climate-resilient varieties. Using water treatment: (i) ample and (ii) restricted-water, the response of 148 genotypes were studied comprising wild, feral and cultivated C. canephora. Biomass allocation, standing leaf area and leaf area growth data were collected. Linear mixed effect models and PCA were used to the analyze effect of water treatment on genotypes from different: (i) cultivation status, (ii) genetic groups and (iii) locations. We also assessed the relationship between drought tolerance for relative growth rate in leaf area (RGRA), total number of leaves (TNL), total leaf area (TLA) and total leaf dry weight (TLDW) of genotypes at final harvest. Restricted-water reduced RGRA across genetic groups (3.2-32.5%) and locations (7.1-36.7%) but not cultivation status. For TNL, TLA and TLDW, genotypes that performed well in ample-water performed worse under restricted-water, indicating growth-tolerance trade-off. Drought tolerance in RGRA and TNL were negatively correlated with wetness index suggesting some degree of adaptation to local climate. Findings indicate a growth-tolerance trade-off within this tropical tree species and drought tolerance of Uganda's C. canephora is somewhat associated with local climate.
Collapse
Affiliation(s)
- Catherine Kiwuka
- Centre for Crop Systems AnalysisWageningen UniversityWageningenThe Netherlands
- Plant Genetic Resources CentreNational Agricultural Research OrganizationEntebbeUganda
| | - Jan Vos
- Centre for Crop Systems AnalysisWageningen UniversityWageningenThe Netherlands
| | - Jacob C. Douma
- Centre for Crop Systems AnalysisWageningen UniversityWageningenThe Netherlands
| | - Pascal Musoli
- National Coffee Research InstituteNational Agricultural Research OrganizationMukonoUganda
| | - John W. Mulumba
- Plant Genetic Resources CentreNational Agricultural Research OrganizationEntebbeUganda
| | | | - Niels P. R. Anten
- Centre for Crop Systems AnalysisWageningen UniversityWageningenThe Netherlands
| |
Collapse
|
6
|
Sousa P, Vieira H, Santos E, Viana A, Boaechat M, Partelli F. Coffea canephora: Heterotic Crosses Indicated by Molecular Approach. PLANTS (BASEL, SWITZERLAND) 2022; 11:3023. [PMID: 36432754 PMCID: PMC9692650 DOI: 10.3390/plants11223023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 10/28/2022] [Accepted: 11/06/2022] [Indexed: 06/16/2023]
Abstract
The genus Coffea comprises more than 100 species, of which the most commercially important are Coffea arabica and Coffea canephora. The latter is a self-incompatible plant with high natural genetic variability. The detection of polymorphism at the DNA level by molecular markers allowed significant progress with the selection of superior plants. The objective of this study was the molecular characterization of C. canephora using microsatellite markers. To this end, a population of forty-four C. canephora genotypes and one C. arabica genotype, was evaluated with 21 primers. These primers identified 61 alleles in the population and between 2 and 5 alleles per locus. The information index indicated a high level of polymorphism of the analyzed markers. According to the observed and expected heterozygosity, the genetic diversity in the population is high. The overall inbreeding coefficient of the population detected high heterozygosity and zero inbreeding within this population. Genetic diversity among the accessions was also evaluated by the unweighted pair-group method based on arithmetic averages (UPGMA). Six groups were formed based on Mojena's cutting rule and three using the Bayesian approach. These results confirmed the existence of genetic diversity, genetic variability and a potential for selection in future breeding efforts involving the 45 genotypes studied.
Collapse
Affiliation(s)
- Priscila Sousa
- Department of Plant Science, Universidade Estadual Norte Fluminense, Campos dos Goytacazes, Rio de Janeiro 28013-602, Brazil
| | - Henrique Vieira
- Department of Plant Science, Universidade Estadual Norte Fluminense, Campos dos Goytacazes, Rio de Janeiro 28013-602, Brazil
| | - Eileen Santos
- Research Center, Universidade Estadual do Mato Grosso, Estudo e Desenvolvimento Agroambiental, Tangará da Serra 78300-000, Brazil
| | - Alexandre Viana
- Department of Plant Science, Universidade Estadual Norte Fluminense, Campos dos Goytacazes, Rio de Janeiro 28013-602, Brazil
| | - Marcela Boaechat
- Department of Plant Science, Universidade Estadual Norte Fluminense, Campos dos Goytacazes, Rio de Janeiro 28013-602, Brazil
| | - Fábio Partelli
- Department of Plant Science, Universidade Federal do Espírito Santo, São Mateus 29932-540, Brazil
| |
Collapse
|
7
|
Tournebize R, Borner L, Manel S, Meynard CN, Vigouroux Y, Crouzillat D, Fournier C, Kassam M, Descombes P, Tranchant-Dubreuil C, Parrinello H, Kiwuka C, Sumirat U, Legnate H, Kambale JL, Sonké B, Mahinga JC, Musoli P, Janssens SB, Stoffelen P, de Kochko A, Poncet V. Ecological and genomic vulnerability to climate change across native populations of Robusta coffee (Coffea canephora). GLOBAL CHANGE BIOLOGY 2022; 28:4124-4142. [PMID: 35527235 DOI: 10.1111/gcb.16191] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 02/11/2022] [Accepted: 03/17/2022] [Indexed: 06/14/2023]
Abstract
The assessment of population vulnerability under climate change is crucial for planning conservation as well as for ensuring food security. Coffea canephora is, in its native habitat, an understorey tree that is mainly distributed in the lowland rainforests of tropical Africa. Also known as Robusta, its commercial value constitutes a significant revenue for many human populations in tropical countries. Comparing ecological and genomic vulnerabilities within the species' native range can provide valuable insights about habitat loss and the species' adaptive potential, allowing to identify genotypes that may act as a resource for varietal improvement. By applying species distribution models, we assessed ecological vulnerability as the decrease in climatic suitability under future climatic conditions from 492 occurrences. We then quantified genomic vulnerability (or risk of maladaptation) as the allelic composition change required to keep pace with predicted climate change. Genomic vulnerability was estimated from genomic environmental correlations throughout the native range. Suitable habitat was predicted to diminish to half its size by 2050, with populations near coastlines and around the Congo River being the most vulnerable. Whole-genome sequencing revealed 165 candidate SNPs associated with climatic adaptation in C. canephora, which were located in genes involved in plant response to biotic and abiotic stressors. Genomic vulnerability was higher for populations in West Africa and in the region at the border between DRC and Uganda. Despite an overall low correlation between genomic and ecological vulnerability at broad scale, these two components of vulnerability overlap spatially in ways that may become damaging. Genomic vulnerability was estimated to be 23% higher in populations where habitat will be lost in 2050 compared to regions where habitat will remain suitable. These results highlight how ecological and genomic vulnerabilities are relevant when planning on how to cope with climate change regarding an economically important species.
Collapse
Affiliation(s)
- Rémi Tournebize
- DIADE, CIRAD, IRD, Univ. Montpellier, Montpellier, France
- Instituto Gulbenkian de Ciência, Oeiras, Portugal
| | - Leyli Borner
- CBGP, INRAE, CIRAD, IRD, Montpellier SupAgro, Univ Montpellier, Montpellier, France
- INRAE, Le Rheu, France
| | - Stéphanie Manel
- CEFE, CNRS, EPHE-PSL University, IRD, Univ Montpellier, Montpellier, France
| | - Christine N Meynard
- CBGP, INRAE, CIRAD, IRD, Montpellier SupAgro, Univ Montpellier, Montpellier, France
| | - Yves Vigouroux
- DIADE, CIRAD, IRD, Univ. Montpellier, Montpellier, France
| | | | - Coralie Fournier
- Nestlé Research, Société des Produits Nestlé S.A., EPFL Innovation Park, Lausanne, Switzerland
- School of Medicine, University of Geneva, Geneva, Switzerland
| | - Mohamed Kassam
- Nestlé Research, Société des Produits Nestlé S.A., EPFL Innovation Park, Lausanne, Switzerland
- Danone Nutricia Research, Singapore
| | - Patrick Descombes
- Nestlé Research, Société des Produits Nestlé S.A., EPFL Innovation Park, Lausanne, Switzerland
| | | | - Hugues Parrinello
- CNRS, INSERM, Univ. Montpellier, Montpellier, France
- Montpellier GenomiX, France Génomique, Montpellier, France
| | | | | | | | - Jean-Léon Kambale
- University of Kisangani, Kisangani, Democratic Republic of the Congo
| | | | | | | | - Steven B Janssens
- Meise Botanic Garden, Meise, Belgium
- Department of Biology, KU Leuven, Leuven, Belgium
| | | | | | - Valérie Poncet
- DIADE, CIRAD, IRD, Univ. Montpellier, Montpellier, France
| |
Collapse
|
8
|
Mekbib Y, Tesfaye K, Dong X, Saina JK, Hu GW, Wang QF. Whole-genome resequencing of Coffea arabica L. (Rubiaceae) genotypes identify SNP and unravels distinct groups showing a strong geographical pattern. BMC PLANT BIOLOGY 2022; 22:69. [PMID: 35164709 PMCID: PMC8842891 DOI: 10.1186/s12870-022-03449-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 01/27/2022] [Indexed: 06/04/2023]
Abstract
BACKGROUND Coffea arabica L. is an economically important agricultural crop and the most popular beverage worldwide. As a perennial crop with recalcitrant seed, conservation of the genetic resources of coffee can be achieved through the complementary approach of in-situ and ex-situ field genebank. In Ethiopia, a large collection of C. arabica L. germplasm is preserved in field gene banks. Here, we report the whole-genome resequencing of 90 accessions from Choche germplasm bank representing garden and forest-based coffee production systems using Illumina sequencing technology. RESULTS The genome sequencing generated 6.41 billion paired-end reads, with a mean of 71.19 million reads per sample. More than 93% of the clean reads were mapped onto the C. arabica L. reference genome. A total of 11.08 million variants were identified, among which 9.74 million (87.9%) were SNPs (Single nucleotide polymorphisms) and 1.34 million (12.1%) were InDels. In all accessions, genomic variants were unevenly distributed across the coffee genome. The phylogenetic analysis using the SNP markers displayed distinct groups. CONCLUSIONS Resequencing of the coffee accessions has allowed identification of genetic markers, such as SNPs and InDels. The SNPs discovered in this study might contribute to the variation in important pathways of genes for important agronomic traits such as caffeine content, yield, disease, and pest in coffee. Moreover, the genome resequencing data and the genetic markers identified from 90 accessions provide insight into the genetic variation of the coffee germplasm and facilitate a broad range of genetic studies.
Collapse
Affiliation(s)
- Yeshitila Mekbib
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China
- Ethiopian Biodiversity Institute, P.O. Box 30726, Addis Ababa, Ethiopia
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan, 430074, China
| | - Kassahun Tesfaye
- Department of Microbial, Cellular and Molecular Biology, Addis Ababa University, Addis Ababa, Ethiopia
- Ethiopian Biotechnology Institute, Ministry of Innovation and Technology, Addis Ababa, Ethiopia
| | - Xiang Dong
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan, 430074, China
| | - Josphat K Saina
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan, 430074, China
- Centre for Integrative Conservation, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, 666303, China
| | - Guang-Wan Hu
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan, 430074, China.
| | - Qing-Feng Wang
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan, 430074, China
| |
Collapse
|
9
|
de Aquino SO, Kiwuka C, Tournebize R, Gain C, Marraccini P, Mariac C, Bethune K, Couderc M, Cubry P, Andrade AC, Lepelley M, Darracq O, Crouzillat D, Anten N, Musoli P, Vigouroux Y, de Kochko A, Manel S, François O, Poncet V. Adaptive potential of
Coffea canephora
from Uganda in response to climate change. Mol Ecol 2022; 31:1800-1819. [DOI: 10.1111/mec.16360] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 11/12/2021] [Accepted: 01/06/2022] [Indexed: 11/28/2022]
Affiliation(s)
| | - Catherine Kiwuka
- NARO Kampala Uganda
- Centre for Crop Systems Analysis Wageningen Univ. Wageningen Netherlands
| | | | - Clément Gain
- U. Grenoble‐Alpes, TIMC‐IMAG, CNRS UMR 5525, Grenoble, France and LJK, Inria, CNRS UMR 5224 Grenoble France
| | | | - Cédric Mariac
- DIADE, Univ. Montpellier, CIRAD, IRD Montpellier France
| | - Kévin Bethune
- DIADE, Univ. Montpellier, CIRAD, IRD Montpellier France
| | - Marie Couderc
- DIADE, Univ. Montpellier, CIRAD, IRD Montpellier France
| | | | | | | | | | | | - Niels Anten
- Centre for Crop Systems Analysis Wageningen Univ. Wageningen Netherlands
| | | | | | | | - Stéphanie Manel
- CEFE, Univ Montpellier, CNRS, EPHE‐PSL University, IRD Montpellier France
| | - Olivier François
- U. Grenoble‐Alpes, TIMC‐IMAG, CNRS UMR 5525, Grenoble, France and LJK, Inria, CNRS UMR 5224 Grenoble France
| | | |
Collapse
|
10
|
Vanden Abeele S, Janssens SB, Asimonyio Anio J, Bawin Y, Depecker J, Kambale B, Mwanga Mwanga I, Ebele T, Ntore S, Stoffelen P, Vandelook F. Genetic diversity of wild and cultivated Coffea canephora in northeastern DR Congo and the implications for conservation. AMERICAN JOURNAL OF BOTANY 2021; 108:2425-2434. [PMID: 34634128 PMCID: PMC9305747 DOI: 10.1002/ajb2.1769] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 09/02/2021] [Accepted: 09/07/2021] [Indexed: 06/13/2023]
Abstract
PREMISE Many cultivated coffee varieties descend from Coffea canephora, commonly known as Robusta coffee. The Congo Basin has a century-long history of Robusta coffee cultivation and breeding, and is hypothesized to be the region of origin of many of the cultivated Robusta varieties. Since little is known about the genetic composition of C. canephora in this region, we assessed the genetic diversity of wild and cultivated C. canephora shrubs in the Democratic Republic of the Congo. METHODS Using 18 microsatellite markers, we studied the genetic composition of wild and backyard-grown C. canephora shrubs in the Tshopo and Ituri provinces and multiple accessions from the INERA Yangambi Coffee Collection. We assessed genetic clustering patterns, genetic diversity, and genetic differentiation between populations. RESULTS Genetic differentiation was relatively strong between wild and cultivated C. canephora shrubs, and both gene pools harbored multiple unique alleles. Strong genetic differentiation was also observed between wild populations. The level of genetic diversity in wild populations was similar to that of the INERA Yangambi Coffee Collection, but local wild genotypes were mostly missing from that collection. Shrubs grown in the backyards were genetically similar to the breeding material from INERA Yangambi. CONCLUSIONS Most C. canephora that is grown in local backyards originated from INERA breeding programs, while a few shrubs were obtained directly from surrounding forests. The INERA Yangambi Coffee Collection could benefit from an enrichment with local wild genotypes to increase the genetic resources available for breeding purposes and to support ex situ conservation.
Collapse
Affiliation(s)
| | - Steven B. Janssens
- Meise Botanic Garden, Nieuwelaan 38Meise1860Belgium
- Department of BiologyKU LeuvenBelgium
| | - Justin Asimonyio Anio
- Centre pour la Surveillance de la Biodiversité et Université de KisanganiKisanganiDR Congo
| | - Yves Bawin
- Meise Botanic Garden, Nieuwelaan 38Meise1860Belgium
- Department of BiologyKU LeuvenBelgium
| | - Jonas Depecker
- Meise Botanic Garden, Nieuwelaan 38Meise1860Belgium
- Department of BiologyKU LeuvenBelgium
| | - Bienfait Kambale
- Centre pour la Surveillance de la Biodiversité et Université de KisanganiKisanganiDR Congo
| | | | - Tshimi Ebele
- Institut National des Études et Recherches Agronomique, DR CongoDR Congo
| | | | | | | |
Collapse
|