1
|
Zhang J, Qian J, Zou Q, Zhou F, Kurgan L. Recent Advances in Computational Prediction of Secondary and Supersecondary Structures from Protein Sequences. Methods Mol Biol 2025; 2870:1-19. [PMID: 39543027 DOI: 10.1007/978-1-0716-4213-9_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2024]
Abstract
The secondary structures (SSs) and supersecondary structures (SSSs) underlie the three-dimensional structure of proteins. Prediction of the SSs and SSSs from protein sequences enjoys high levels of use and finds numerous applications in the development of a broad range of other bioinformatics tools. Numerous sequence-based predictors of SS and SSS were developed and published in recent years. We survey and analyze 45 SS predictors that were released since 2018, focusing on their inputs, predictive models, scope of their prediction, and availability. We also review 32 sequence-based SSS predictors, which primarily focus on predicting coiled coils and beta-hairpins and which include five methods that were published since 2018. Substantial majority of these predictive tools rely on machine learning models, including a variety of deep neural network architectures. They also frequently use evolutionary sequence profiles. We discuss details of several modern SS and SSS predictors that are currently available to the users and which were published in higher impact venues.
Collapse
Affiliation(s)
- Jian Zhang
- School of Computer and Information Technology, Xinyang Normal University, Xinyang, China.
- Yangtze Delta Region Institute (Quzhou), University of Electronic Science and Technology of China, Quzhou, China.
| | - Jingjing Qian
- School of Computer and Information Technology, Xinyang Normal University, Xinyang, China
| | - Quan Zou
- Yangtze Delta Region Institute (Quzhou), University of Electronic Science and Technology of China, Quzhou, China
| | - Feng Zhou
- School of Computer and Information Technology, Xinyang Normal University, Xinyang, China
| | - Lukasz Kurgan
- Department of Computer Science, College of Engineering, Virginia Commonwealth University, Virginia, VA, USA.
| |
Collapse
|
2
|
Wu T, Cheng W, Cheng J. Improving Protein Secondary Structure Prediction by Deep Language Models and Transformer Networks. Methods Mol Biol 2025; 2867:43-53. [PMID: 39576574 DOI: 10.1007/978-1-0716-4196-5_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2024]
Abstract
Protein secondary structure prediction is useful for many applications. It can be considered a language translation problem, that is, translating a sequence of 20 different amino acids into a sequence of secondary structure symbols (e.g., alpha helix, beta strand, and coil). Here, we develop a novel protein secondary structure predictor called TransPross based on the transformer network and attention mechanism widely used in natural language processing to directly extract the evolutionary information from the protein language (i.e., raw multiple sequence alignment [MSA] of a protein) to predict the secondary structure. The method is different from traditional methods that first generate a MSA and then calculate expert-curated statistical profiles from the MSA as input. The attention mechanism used by TransPross can effectively capture long-range residue-residue interactions in protein sequences to predict secondary structures. Benchmarked on several datasets, TransPross outperforms the state-of-art methods. Moreover, our experiment shows that the prediction accuracy of TransPross positively correlates with the depth of MSAs, and it is able to achieve the average prediction accuracy (i.e., Q3 score) above 80% for hard targets with few homologous sequences in their MSAs. TransPross is freely available at https://github.com/BioinfoMachineLearning/TransPro .
Collapse
Affiliation(s)
- Tianqi Wu
- Electrical Engineering and Computer Science Department, University of Missouri, Columbia, MO, USA
| | - Weihang Cheng
- Department of Chemistry, Hubei University, Wuhan, Hubei, China
| | - Jianlin Cheng
- Electrical Engineering and Computer Science Department, University of Missouri, Columbia, MO, USA.
| |
Collapse
|
3
|
Srivastava G, Liu M, Ni X, Pu L, Brylinski M. Machine Learning Techniques to Infer Protein Structure and Function from Sequences: A Comprehensive Review. Methods Mol Biol 2025; 2867:79-104. [PMID: 39576576 DOI: 10.1007/978-1-0716-4196-5_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2024]
Abstract
The elucidation of protein structure and function plays a pivotal role in understanding biological processes and facilitating drug discovery. With the exponential growth of protein sequence data, machine learning techniques have emerged as powerful tools for predicting protein characteristics from sequences alone. This review provides a comprehensive overview of the importance and application of machine learning in inferring protein structure and function. We discuss various machine learning approaches, primarily focusing on convolutional neural networks and natural language processing, and their utilization in predicting protein secondary and tertiary structures, residue-residue contacts, protein function, and subcellular localization. Furthermore, we highlight the challenges associated with using machine learning techniques in this context, such as the availability of high-quality training datasets and the interpretability of models. We also delve into the latest progress in the field concerning the advancements made in the development of intricate deep learning architectures. Overall, this review underscores the significance of machine learning in advancing our understanding of protein structure and function, and its potential to revolutionize drug discovery and personalized medicine.
Collapse
Affiliation(s)
- Gopal Srivastava
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, USA
| | - Mengmeng Liu
- Division of Electrical and Computer Engineering, Louisiana State University, Baton Rouge, LA, USA
| | - Xialong Ni
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, USA
| | - Limeng Pu
- Center for Computation and Technology, Louisiana State University, Baton Rouge, LA, USA
| | - Michal Brylinski
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, USA.
- Center for Computation and Technology, Louisiana State University, Baton Rouge, LA, USA.
| |
Collapse
|
4
|
Bi X, Cheng Y, Lv X, Liu Y, Li J, Du G, Chen J, Liu L. A Multi-Omics, Machine Learning-Aware, Genome-Wide Metabolic Model of Bacillus Subtilis Refines the Gene Expression and Cell Growth Prediction. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2408705. [PMID: 39287062 PMCID: PMC11558093 DOI: 10.1002/advs.202408705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Indexed: 09/19/2024]
Abstract
Given the extensive heterogeneity and variability, understanding cellular functions and regulatory mechanisms through the analysis of multi-omics datasets becomes extremely challenging. Here, a comprehensive modeling framework of multi-omics machine learning and metabolic network models are proposed that covers various cellular biological processes across multiple scales. This model on an extensive normalized compendium of Bacillus subtilis is validated, which encompasses gene expression data from environmental perturbations, transcriptional regulation, signal transduction, protein translation, and growth measurements. Comparison with high-throughput experimental data shows that EM_iBsu1209-ME, constructed on this basis, can accurately predict the expression of 605 genes and the synthesis of 23 metabolites under different conditions. This study paves the way for the construction of comprehensive biological databases and high-performance multi-omics metabolic models to achieve accurate predictive analysis in exploring complex mechanisms of cell genotypes and phenotypes.
Collapse
Affiliation(s)
- Xinyu Bi
- Key Laboratory of Carbohydrate Chemistry and BiotechnologyMinistry of EducationJiangnan UniversityWuxi214122China
- Science Center for Future FoodsMinistry of EducationJiangnan UniversityWuxi214122China
| | - Yang Cheng
- Key Laboratory of Carbohydrate Chemistry and BiotechnologyMinistry of EducationJiangnan UniversityWuxi214122China
- Science Center for Future FoodsMinistry of EducationJiangnan UniversityWuxi214122China
| | - Xueqin Lv
- Key Laboratory of Carbohydrate Chemistry and BiotechnologyMinistry of EducationJiangnan UniversityWuxi214122China
- Science Center for Future FoodsMinistry of EducationJiangnan UniversityWuxi214122China
| | - Yanfeng Liu
- Key Laboratory of Carbohydrate Chemistry and BiotechnologyMinistry of EducationJiangnan UniversityWuxi214122China
- Science Center for Future FoodsMinistry of EducationJiangnan UniversityWuxi214122China
| | - Jianghua Li
- Key Laboratory of Carbohydrate Chemistry and BiotechnologyMinistry of EducationJiangnan UniversityWuxi214122China
- Science Center for Future FoodsMinistry of EducationJiangnan UniversityWuxi214122China
| | - Guocheng Du
- Key Laboratory of Carbohydrate Chemistry and BiotechnologyMinistry of EducationJiangnan UniversityWuxi214122China
- Science Center for Future FoodsMinistry of EducationJiangnan UniversityWuxi214122China
| | - Jian Chen
- Key Laboratory of Carbohydrate Chemistry and BiotechnologyMinistry of EducationJiangnan UniversityWuxi214122China
- Science Center for Future FoodsMinistry of EducationJiangnan UniversityWuxi214122China
| | - Long Liu
- Key Laboratory of Carbohydrate Chemistry and BiotechnologyMinistry of EducationJiangnan UniversityWuxi214122China
- Science Center for Future FoodsMinistry of EducationJiangnan UniversityWuxi214122China
| |
Collapse
|
5
|
Wang B, Li W. Advances in the Application of Protein Language Modeling for Nucleic Acid Protein Binding Site Prediction. Genes (Basel) 2024; 15:1090. [PMID: 39202449 PMCID: PMC11353971 DOI: 10.3390/genes15081090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 08/13/2024] [Accepted: 08/14/2024] [Indexed: 09/03/2024] Open
Abstract
Protein and nucleic acid binding site prediction is a critical computational task that benefits a wide range of biological processes. Previous studies have shown that feature selection holds particular significance for this prediction task, making the generation of more discriminative features a key area of interest for many researchers. Recent progress has shown the power of protein language models in handling protein sequences, in leveraging the strengths of attention networks, and in successful applications to tasks such as protein structure prediction. This naturally raises the question of the applicability of protein language models in predicting protein and nucleic acid binding sites. Various approaches have explored this potential. This paper first describes the development of protein language models. Then, a systematic review of the latest methods for predicting protein and nucleic acid binding sites is conducted by covering benchmark sets, feature generation methods, performance comparisons, and feature ablation studies. These comparisons demonstrate the importance of protein language models for the prediction task. Finally, the paper discusses the challenges of protein and nucleic acid binding site prediction and proposes possible research directions and future trends. The purpose of this survey is to furnish researchers with actionable suggestions for comprehending the methodologies used in predicting protein-nucleic acid binding sites, fostering the creation of protein-centric language models, and tackling real-world obstacles encountered in this field.
Collapse
Affiliation(s)
| | - Wenjin Li
- Institute for Advanced Study, Shenzhen University, Shenzhen 518061, China;
| |
Collapse
|
6
|
Mao Q, Zhang X, Xu Z, Xiao Y, Song Y, Xu F. Identification of Escherichia coli strains using MALDI-TOF MS combined with long short-term memory neural networks. Aging (Albany NY) 2024; 16:11018-11026. [PMID: 38950328 PMCID: PMC11272126 DOI: 10.18632/aging.205995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 06/03/2024] [Indexed: 07/03/2024]
Abstract
The current study aims to develop a new technique for the precise identification of Escherichia coli strains, utilizing matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS) combined with a long short-term memory (LSTM) neural network. A total of 48 Escherichia coli strains were isolated and cultured on tryptic soy agar medium for 24 hours for the generation of MALDI-TOF MS spectra. Eight hundred MALDI-TOF MS spectra were obtained per strain, resulting in a database of 38,400 spectra. Fifty percent of the data was utilized for LSTM neural network training, with fine-tuned parameters for strain-level identification. The other half served as the test set to assess model performance. Traditional PCA dimension reduction of MALDI-TOF MS spectra indicated 47 out of 48 strains to be unclassifiable. In contrast, the LSTM neural network demonstrated remarkable efficacy. After 20 training epochs, the model achieved a loss value of 0.0524, an accuracy of 0.999, a precision of 0.985, and a recall of 0.982. When tested on the unseen data, the model attained an overall accuracy of 92.24%. The integration of MALDI-TOF MS and LSTM neural network markedly enhances the identification of Escherichia coli strains. This innovative approach offers an effective and accurate tool for MALDI-TOF MS-based strain-level identification, thus expanding the analytical capabilities of microbial diagnostics.
Collapse
Affiliation(s)
- Qiqi Mao
- Department of General Surgery, Li Huili Hospital Affiliated to Ningbo University, Ningbo 315040, China
| | - Xie Zhang
- Department of Medicine and Pharmacy, Li Huili Hospital Affiliated to Ningbo University, Ningbo 315040, China
| | - Zeping Xu
- Department of Medicine and Pharmacy, Li Huili Hospital Affiliated to Ningbo University, Ningbo 315040, China
| | - Ya Xiao
- School of Medicine, Ningbo University, Ningbo 315211, Zhejiang, China
| | - Yufei Song
- Department of Gastroenterology, Li Huili Hospital Affiliated to Ningbo University, Ningbo 315040, China
| | - Feng Xu
- Department of Gastroenterology, Li Huili Hospital Affiliated to Ningbo University, Ningbo 315040, China
| |
Collapse
|
7
|
Ismi DP, Pulungan R, Afiahayati. Deep learning for protein secondary structure prediction: Pre and post-AlphaFold. Comput Struct Biotechnol J 2022; 20:6271-6286. [PMID: 36420164 PMCID: PMC9678802 DOI: 10.1016/j.csbj.2022.11.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 11/05/2022] [Accepted: 11/05/2022] [Indexed: 11/13/2022] Open
Abstract
This paper aims to provide a comprehensive review of the trends and challenges of deep neural networks for protein secondary structure prediction (PSSP). In recent years, deep neural networks have become the primary method for protein secondary structure prediction. Previous studies showed that deep neural networks had uplifted the accuracy of three-state secondary structure prediction to more than 80%. Favored deep learning methods, such as convolutional neural networks, recurrent neural networks, inception networks, and graph neural networks, have been implemented in protein secondary structure prediction. Methods adapted from natural language processing (NLP) and computer vision are also employed, including attention mechanism, ResNet, and U-shape networks. In the post-AlphaFold era, PSSP studies focus on different objectives, such as enhancing the quality of evolutionary information and exploiting protein language models as the PSSP input. The recent trend to utilize pre-trained language models as input features for secondary structure prediction provides a new direction for PSSP studies. Moreover, the state-of-the-art accuracy achieved by previous PSSP models is still below its theoretical limit. There are still rooms for improvement to be made in the field.
Collapse
Affiliation(s)
- Dewi Pramudi Ismi
- Department of Computer Science and Electronics, Faculty of Mathematics and Natural Sciences, Universitas Gadjah Mada, Yogyakarta, Indonesia
- Department of Infomatics, Faculty of Industrial Technology, Universitas Ahmad Dahlan, Yogyakarta, Indonesia
| | - Reza Pulungan
- Department of Computer Science and Electronics, Faculty of Mathematics and Natural Sciences, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Afiahayati
- Department of Computer Science and Electronics, Faculty of Mathematics and Natural Sciences, Universitas Gadjah Mada, Yogyakarta, Indonesia
| |
Collapse
|
8
|
Antony JV, Koya R, Pournami PN, Nair GG, Balakrishnan JP. Protein secondary structure assignment using residual networks. J Mol Model 2022; 28:269. [PMID: 35997827 DOI: 10.1007/s00894-022-05271-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Accepted: 08/12/2022] [Indexed: 11/27/2022]
Abstract
Proteins are constructed from amino acid sequences. Their structural classifications include primary, secondary, tertiary, and quaternary, with tertiary and quaternary structures influencing protein function. Because a protein's structure is inextricably connected to its biological function, machine learning algorithms that can better anticipate the structures have the potential to lead to new scientific discoveries in human health and improve our capacity to develop new treatments. Protein secondary structure assignment enriches the structural and functional understanding of proteins. It helps in protein structure comparison and classification studies, besides facilitating secondary and tertiary structure prediction systems. Several secondary structure assignment methods have been developed since the 1980s, most of which are based on hydrogen bond analysis and atomic coordinate features. However, the assignment process becomes complex when protein data includes missing atoms. Deep neural networks are often referred to as universal function approximators because they can approximate any function to produce the desired output when properly designed and trained. Optimised deep learning architectures have already proven their ability to increase performance in a wide range of problems. Recently, the ResNet architecture has garnered significant interest due to its applicability in various areas, including image classification and protein contact map prediction. The proposed model, which is based on the ResNet architecture, assigns secondary structures using Cα atom coordinates. The model achieved an accuracy of 94% when evaluated against the benchmark and independent test sets. The findings encourage the development of new deep learning-based methods that are more generalised across various protein learning tasks. Furthermore, it allows computational biologists to delve deeper into integrating these techniques with experimental methods. The model codes are available at: https://github.com/jisnava/ResNet_for_Structure_Assignments/ .
Collapse
Affiliation(s)
- Jisna Vellara Antony
- Department of Computer Science and Engineering, National Institute of Technology Calicut, Kattangal, Kerala, 673601, India.
| | - Roosafeed Koya
- Department of Computer Science and Engineering, National Institute of Technology Calicut, Kattangal, Kerala, 673601, India
| | | | - Gopakumar Gopalakrishnan Nair
- Department of Computer Science and Engineering, National Institute of Technology Calicut, Kattangal, Kerala, 673601, India
| | | |
Collapse
|
9
|
Nallasamy V, Seshiah M. Protein Structure Prediction Using Quantile Dragonfly and Structural Class-Based Deep Learning. INT J PATTERN RECOGN 2022. [DOI: 10.1142/s021800142250015x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Predicting three-dimensional structure of a protein in the field of computational molecular biology has received greater attention. Most of the recent research works aimed at exploring search space, however with the increasing nature and size of data, protein structure identification and prediction are still in the preliminary stage. This work is aimed at exploring search space to tackle protein structure prediction with minimum execution time and maximum accuracy by means of quantile regressive dragonfly and structural class homolog-based deep learning (QRD-SCHDL). The proposed QRD-SCHDL method consists of two distinct steps. They are protein structure identification and prediction. In the first step, protein structure identification is performed by means of QRD optimization model to identify protein structure with minimum error. Here the protein structure identification is first performed as the raw database contains sequence information and does not contain structural information. An optimization model is designed to obtain the structural information from the database. However, protein structure gives much more insight than its sequence. Therefore, to perform computational prediction of protein structure from its sequence, actual protein structure prediction is made. The second step involves the actual protein structure prediction via structural class and homolog-based deep learning. For each protein structure prediction, a scoring matrix is obtained by utilizing structural class maximum correlation coefficient. Finally, the proposed method is tested on a set of different unique numbers of protein data and compared to the state-of-the-art methods. The obtained results showed the potentiality of the proposed method in terms of metrics, error rate, protein structure prediction time, protein structure prediction accuracy, precision, specificity, recall, ROC, Kappa coefficient and [Formula: see text]-measure, respectively. It also shows that the proposed QRD-SCHDL method attains comparable results and outperformed in certain cases, thereby signifying the efficiency of the proposed work.
Collapse
Affiliation(s)
- Varanavasi Nallasamy
- Department of Computer Science, Periyar University, Salem-636011, Tamil Nadu, India
| | - Malarvizhi Seshiah
- Department of Computer Science, Thiruvalluvar Government Arts College, Rasipuram-637401, Namakkal, Tamil Nadu, India
| |
Collapse
|