1
|
Moye AR, Robichaux MA, Agosto MA, Rivolta C, Moulin AP, Wensel TG. Ciliopathy-associated protein, CEP290, is required for ciliary necklace and outer segment membrane formation in retinal photoreceptors. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.20.633784. [PMID: 39896654 PMCID: PMC11785020 DOI: 10.1101/2025.01.20.633784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/04/2025]
Abstract
The most common genetic cause of the childhood blinding disease Leber Congenital Amaurosis is mutation of the ciliopathy gene CEP290. Though studied extensively, the photoreceptor-specific roles of CEP290 remain unclear. Using advanced microscopy techniques, we investigated the sub-ciliary localization of CEP290 and its role in mouse photoreceptors during development. CEP290 was found throughout the connecting cilium between the microtubules and membrane, with nine-fold symmetry. In the absence of CEP290 ciliogenesis occurs, but the connecting cilium membrane is aberrant, and sub-structures, such as the ciliary necklace and Y-links, are defective or absent throughout the mid to distal connecting cilium. Transition zone proteins AHI1 and NPHP1 were abnormally restricted to the proximal connecting cilium in the absence of CEP290, while others like NPHP8 and CEP89 were unaffected. Although outer segment disc formation is inhibited in CEP290 mutant retina, we observed large numbers of extracellular vesicles. These results suggest roles for CEP290 in ciliary membrane structure, outer segment disc formation and photoreceptor-specific spatial distribution of a subset of transition zone proteins, which collectively lead to failure of outer segment formation and photoreceptor degeneration.
Collapse
Affiliation(s)
- Abigail R Moye
- Institute of Molecular and Clinical Ophthalmology Basel (IOB), Basel, 4031, Switzerland
- Department of Ophthalmology, University of Basel, Basel, 4031, Switzerland
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Michael A Robichaux
- Department of Ophthalmology & Visual Sciences and Department of Biochemistry & Molecular Medicine, West Virginia University, Morgantown, West Virginia, USA
| | - Melina A Agosto
- Retina and Optic Nerve Research Laboratory, Department of Physiology and Biophysics, and Department of Ophthalmology and Visual Sciences, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Carlo Rivolta
- Institute of Molecular and Clinical Ophthalmology Basel (IOB), Basel, 4031, Switzerland
- Department of Ophthalmology, University of Basel, Basel, 4031, Switzerland
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Alexandre P Moulin
- Jules-Gonin Eye Hospital, Fondation Asile des Aveugles, University of Lausanne, 1004 Lausanne, Switzerland
| | - Theodore G Wensel
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
2
|
Datta P, Rhee KD, Staudt RJ, Thompson JM, Hsu Y, Hassan S, Drack AV, Seo S. Delivering large genes using adeno-associated virus and the CRE-lox DNA recombination system. Hum Mol Genet 2024; 33:2094-2110. [PMID: 39393808 PMCID: PMC11630788 DOI: 10.1093/hmg/ddae144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 09/20/2024] [Accepted: 09/26/2024] [Indexed: 10/13/2024] Open
Abstract
Adeno-associated virus (AAV) is a safe and efficient gene delivery vehicle for gene therapies. However, its relatively small packaging capacity limits its use as a gene transfer vector. Here, we describe a strategy to deliver large genes that exceed the AAV's packaging capacity using up to four AAV vectors and the CRE-lox DNA recombination system. We devised novel lox sites by combining non-compatible and reaction equilibrium-modifying lox site variants. These lox sites facilitate sequence-specific and near-unidirectional recombination of AAV vector genomes, enabling efficient reconstitution of up to 16 kb of therapeutic genes in a pre-determined configuration. Using this strategy, we have developed AAV gene therapy vectors to deliver IFT140, PCDH15, CEP290, and CDH23 and demonstrate efficient production of full-length proteins in cultured mammalian cells and mouse retinas. Notably, AAV-IFT140 gene therapy vectors ameliorated retinal degeneration and preserved visual functions in an IFT140-associated retinitis pigmentosa mouse model. The CRE-lox approach described here provides a simple, flexible, and effective platform for generating AAV gene therapy vectors beyond AAV's packaging capacity.
Collapse
Affiliation(s)
- Poppy Datta
- Department of Ophthalmology and Visual Sciences, The University of Iowa Carver College of Medicine, 375 Newton Road, Iowa City, IA 52242, United States
- Institute for Vision Research, The University of Iowa Carver College of Medicine, 375 Newton Road, Iowa City, IA 52242, United States
| | - Kun-Do Rhee
- Department of Ophthalmology and Visual Sciences, The University of Iowa Carver College of Medicine, 375 Newton Road, Iowa City, IA 52242, United States
- Institute for Vision Research, The University of Iowa Carver College of Medicine, 375 Newton Road, Iowa City, IA 52242, United States
| | - Rylee J Staudt
- Department of Ophthalmology and Visual Sciences, The University of Iowa Carver College of Medicine, 375 Newton Road, Iowa City, IA 52242, United States
- Institute for Vision Research, The University of Iowa Carver College of Medicine, 375 Newton Road, Iowa City, IA 52242, United States
| | - Jacob M Thompson
- Department of Ophthalmology and Visual Sciences, The University of Iowa Carver College of Medicine, 375 Newton Road, Iowa City, IA 52242, United States
- Institute for Vision Research, The University of Iowa Carver College of Medicine, 375 Newton Road, Iowa City, IA 52242, United States
| | - Ying Hsu
- Department of Ophthalmology and Visual Sciences, The University of Iowa Carver College of Medicine, 375 Newton Road, Iowa City, IA 52242, United States
- Institute for Vision Research, The University of Iowa Carver College of Medicine, 375 Newton Road, Iowa City, IA 52242, United States
| | - Salma Hassan
- Department of Ophthalmology and Visual Sciences, The University of Iowa Carver College of Medicine, 375 Newton Road, Iowa City, IA 52242, United States
- Institute for Vision Research, The University of Iowa Carver College of Medicine, 375 Newton Road, Iowa City, IA 52242, United States
| | - Arlene V Drack
- Department of Ophthalmology and Visual Sciences, The University of Iowa Carver College of Medicine, 375 Newton Road, Iowa City, IA 52242, United States
- Institute for Vision Research, The University of Iowa Carver College of Medicine, 375 Newton Road, Iowa City, IA 52242, United States
- Department of Pediatrics, The University of Iowa Carver College of Medicine, 200 Hawkins Drive, Iowa City, IA 52242, United States
| | - Seongjin Seo
- Department of Ophthalmology and Visual Sciences, The University of Iowa Carver College of Medicine, 375 Newton Road, Iowa City, IA 52242, United States
- Institute for Vision Research, The University of Iowa Carver College of Medicine, 375 Newton Road, Iowa City, IA 52242, United States
| |
Collapse
|
3
|
Lewis TR, Castillo CM, Klementieva NV, Hsu Y, Hao Y, Spencer WJ, Drack AV, Pazour GJ, Arshavsky VY. Contribution of intraflagellar transport to compartmentalization and maintenance of the photoreceptor cell. Proc Natl Acad Sci U S A 2024; 121:e2408551121. [PMID: 39145934 PMCID: PMC11348033 DOI: 10.1073/pnas.2408551121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 07/15/2024] [Indexed: 08/16/2024] Open
Abstract
The first steps of vision take place in the ciliary outer segment compartment of photoreceptor cells. The protein composition of outer segments is uniquely suited to perform this function. The most abundant among these proteins is the visual pigment, rhodopsin, whose outer segment trafficking involves intraflagellar transport (IFT). Here, we report three major findings from the analysis of mice in which ciliary transport was acutely impaired by conditional knockouts of IFT-B subunits. First, we demonstrate the existence of a sorting mechanism whereby mislocalized rhodopsin is recruited to and concentrated in extracellular vesicles prior to their release, presumably to protect the cell from adverse effects of protein mislocalization. Second, reducing rhodopsin expression significantly delays photoreceptor degeneration caused by IFT disruption, suggesting that controlling rhodopsin levels may be an effective therapy for some cases of retinal degenerative disease. Last, the loss of IFT-B subunits does not recapitulate a phenotype observed in mutants of the BBSome (another ciliary transport protein complex relying on IFT) in which non-ciliary proteins accumulate in the outer segment. Whereas it is widely thought that the role of the BBSome is to primarily participate in ciliary transport, our data suggest that the BBSome has another major function independent of IFT and possibly related to maintaining the diffusion barrier of the ciliary transition zone.
Collapse
Affiliation(s)
- Tylor R. Lewis
- Department of Ophthalmology, Duke University Medical Center, Durham, NC27710
| | - Carson M. Castillo
- Department of Ophthalmology, Duke University Medical Center, Durham, NC27710
| | | | - Ying Hsu
- Department of Ophthalmology and Visual Sciences, University of Iowa, Iowa City, IA52242
| | - Ying Hao
- Department of Ophthalmology, Duke University Medical Center, Durham, NC27710
| | - William J. Spencer
- Department of Ophthalmology, Duke University Medical Center, Durham, NC27710
| | - Arlene V. Drack
- Department of Ophthalmology and Visual Sciences, University of Iowa, Iowa City, IA52242
| | - Gregory J. Pazour
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA01605
| | - Vadim Y. Arshavsky
- Department of Ophthalmology, Duke University Medical Center, Durham, NC27710
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC27710
| |
Collapse
|
4
|
Masek M, Bachmann-Gagescu R. Control of protein and lipid composition of photoreceptor outer segments-Implications for retinal disease. Curr Top Dev Biol 2023; 155:165-225. [PMID: 38043951 DOI: 10.1016/bs.ctdb.2023.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
Vision is arguably our most important sense, and its loss brings substantial limitations to daily life for affected individuals. Light is perceived in retinal photoreceptors (PRs), which are highly specialized neurons subdivided into several compartments with distinct functions. The outer segments (OSs) of photoreceptors represent highly specialized primary ciliary compartments hosting the phototransduction cascade, which transforms incoming light into a neuronal signal. Retinal disease can result from various pathomechanisms originating in distinct subcompartments of the PR cell, or in the retinal pigment epithelium which supports the PRs. Dysfunction of primary cilia causes human disorders known as "ciliopathies", in which retinal disease is a common feature. This chapter focuses on PR OSs, discussing the mechanisms controlling their complex structure and composition. A sequence of tightly regulated sorting and trafficking events, both upstream of and within this ciliary compartment, ensures the establishment and maintenance of the adequate proteome and lipidome required for signaling in response to light. We discuss in particular our current understanding of the role of ciliopathy proteins involved in multi-protein complexes at the ciliary transition zone (CC2D2A) or BBSome (BBS1) and how their dysfunction causes retinal disease. While the loss of CC2D2A prevents the fusion of vesicles and delivery of the photopigment rhodopsin to the ciliary base, leading to early OS ultrastructural defects, BBS1 deficiency results in precocious accumulation of cholesterol in mutant OSs and decreased visual function preceding morphological changes. These distinct pathomechanisms underscore the central role of ciliary proteins involved in multiple processes controlling OS protein and lipid composition.
Collapse
Affiliation(s)
- Markus Masek
- Institute of Medical Genetics, University of Zurich, Zurich, Switzerland; Department of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
| | - Ruxandra Bachmann-Gagescu
- Institute of Medical Genetics, University of Zurich, Zurich, Switzerland; Department of Molecular Life Sciences, University of Zurich, Zurich, Switzerland; University Research Priority Program AdaBD, University of Zurich, Zurich, Switzerland.
| |
Collapse
|
5
|
Rebelo Neves E, Carvalho AL, Mesquita T, Paiva C, Alfaiate M, Figueira J, Murta J, Marques JP. Bilateral functional worsening following voretigene neparvovec therapy. Eye (Lond) 2023; 37:2828-2829. [PMID: 36801965 PMCID: PMC10482937 DOI: 10.1038/s41433-023-02411-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 12/14/2022] [Accepted: 01/18/2023] [Indexed: 02/19/2023] Open
Affiliation(s)
- Emmanuel Rebelo Neves
- Ophthalmology Unit, Centro Hospitalar e Universitário de Coimbra (CHUC), Coimbra, Portugal
| | - Ana Luísa Carvalho
- Clinical Academic Center of Coimbra (CACC), Coimbra, Portugal
- Medical Genetics Unit, Centro Hospitalar e Universitário de Coimbra (CHUC), Coimbra, Portugal
- University Clinic of Medical Genetics, Faculty of Medicine, University of Coimbra (FMUC), Coimbra, Portugal
| | - Teresa Mesquita
- Ophthalmology Unit, Centro Hospitalar e Universitário de Coimbra (CHUC), Coimbra, Portugal
| | - Catarina Paiva
- Ophthalmology Unit, Centro Hospitalar e Universitário de Coimbra (CHUC), Coimbra, Portugal
| | - Mário Alfaiate
- Ophthalmology Unit, Centro Hospitalar e Universitário de Coimbra (CHUC), Coimbra, Portugal
| | - João Figueira
- Ophthalmology Unit, Centro Hospitalar e Universitário de Coimbra (CHUC), Coimbra, Portugal
- Clinical Academic Center of Coimbra (CACC), Coimbra, Portugal
- University Clinic of Ophthalmology, Faculty of Medicine, University of Coimbra (FMUC), Coimbra, Portugal
| | - Joaquim Murta
- Ophthalmology Unit, Centro Hospitalar e Universitário de Coimbra (CHUC), Coimbra, Portugal
- Clinical Academic Center of Coimbra (CACC), Coimbra, Portugal
- University Clinic of Ophthalmology, Faculty of Medicine, University of Coimbra (FMUC), Coimbra, Portugal
| | - João Pedro Marques
- Ophthalmology Unit, Centro Hospitalar e Universitário de Coimbra (CHUC), Coimbra, Portugal.
- Clinical Academic Center of Coimbra (CACC), Coimbra, Portugal.
- University Clinic of Ophthalmology, Faculty of Medicine, University of Coimbra (FMUC), Coimbra, Portugal.
| |
Collapse
|
6
|
Tauqeer Z, O'Neil EC, Brucker AJ, Aleman TS. NPHP1 FULL DELETION CAUSES NEPHRONOPHTHISIS AND A CONE-ROD DYSTROPHY. Retin Cases Brief Rep 2023; 17:352-358. [PMID: 36913617 DOI: 10.1097/icb.0000000000001208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
PURPOSE To describe in detail the structural and functional phenotypes of a patient with cone-rod dystrophy associated with a full deletion of the NPHP1 gene. METHODS A 30-year-old man with a history of end-stage renal disease presented with progressive vision loss in early adulthood prompting evaluation for retinal disease. Ophthalmic evaluation was performed including visual fields, electroretinography, spectral domain optical coherence tomography and short-wavelength and near-infrared fundus autofluorescence imaging. RESULTS The visual acuity was 20/60 in each eye. Fundus examination revealed a subtle bull's-eye maculopathy confirmed with fundus autofluorescence. Spectral domain optical coherence tomography demonstrated perifoveal loss of the outer retinal layers with structural preservation further peripherally. Static perimetry confirmed the loss of cone greater than rod sensitivities in a manner that colocalized to structural findings. Electroretinography revealed decreased cone- and rod-mediated responses. Genetic testing confirmed a homozygous whole-gene deletion of the NPHP1 gene. CONCLUSION NPHP1 -associated retinal degeneration may present as a cone-rod dystrophy in addition to the previously reported rod-predominant phenotypes and can notably be associated with systemic abnormalities, including renal disease. Our work further expands on the growing literature describing the retinal disease associated with systemic ciliopathies.
Collapse
Affiliation(s)
| | - Erin C O'Neil
- Scheie Eye Institute; and
- The Center for Advanced Retinal and Ocular Therapeutics, Department of Ophthalmology, University of Pennsylvania, Philadelphia, Pennsylvania
| | | | - Tomas S Aleman
- Scheie Eye Institute; and
- The Center for Advanced Retinal and Ocular Therapeutics, Department of Ophthalmology, University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
7
|
Mayer SK, Thomas J, Helms M, Kothapalli A, Cherascu I, Salesevic A, Stalter E, Wang K, Datta P, Searby C, Seo S, Hsu Y, Bhattarai S, Sheffield VC, Drack AV. Progressive retinal degeneration of rods and cones in a Bardet-Biedl syndrome type 10 mouse model. Dis Model Mech 2022; 15:dmm049473. [PMID: 36125046 PMCID: PMC9536196 DOI: 10.1242/dmm.049473] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 08/03/2022] [Indexed: 11/23/2022] Open
Abstract
Bardet-Biedl syndrome (BBS) is a multi-organ autosomal-recessive disorder caused by mutations in at least 22 different genes. A constant feature is early-onset retinal degeneration leading to blindness. Among the most common forms is BBS type 10 (BBS10), which is caused by mutations in a gene encoding a chaperonin-like protein. To aid in developing treatments, we phenotyped a Bbs10 knockout (Bbs10-/-) mouse model. Analysis by optical coherence tomography (OCT), electroretinography (ERG) and a visually guided swim assay (VGSA) revealed a progressive degeneration (from P19 to 8 months of age) of the outer nuclear layer that is visible by OCT and histology. Cone ERG was absent from at least P30, at which time rod ERG was reduced to 74.4% of control levels; at 8 months, rod ERG was 2.3% of that of controls. VGSA demonstrated loss of functional vision at 9 months. These phenotypes progressed more rapidly than retinal degeneration in the Bbs1M390R/M390R knock-in mouse. This study defines endpoints for preclinical trials that can be utilized to detect a treatment effect in the Bbs10-/- mouse and extrapolated to human clinical trials.
Collapse
Affiliation(s)
- Sara K. Mayer
- Interdisciplinary Graduate Program in Genetics, University of Iowa, Iowa City, IA 52242, USA
- Department of Ophthalmology and Visual Sciences, Institute for Vision Research, University of Iowa, Iowa City, IA 52242, USA
| | - Jacintha Thomas
- Department of Ophthalmology and Visual Sciences, Institute for Vision Research, University of Iowa, Iowa City, IA 52242, USA
| | - Megan Helms
- Department of Ophthalmology and Visual Sciences, Institute for Vision Research, University of Iowa, Iowa City, IA 52242, USA
| | - Aishwarya Kothapalli
- Department of Ophthalmology and Visual Sciences, Institute for Vision Research, University of Iowa, Iowa City, IA 52242, USA
| | - Ioana Cherascu
- Department of Ophthalmology and Visual Sciences, Institute for Vision Research, University of Iowa, Iowa City, IA 52242, USA
| | - Adisa Salesevic
- Department of Ophthalmology and Visual Sciences, Institute for Vision Research, University of Iowa, Iowa City, IA 52242, USA
| | - Elliot Stalter
- Department of Ophthalmology and Visual Sciences, Institute for Vision Research, University of Iowa, Iowa City, IA 52242, USA
| | - Kai Wang
- Department of Biostatistics, University of Iowa, Iowa City, IA 52242, USA
| | - Poppy Datta
- Department of Ophthalmology and Visual Sciences, Institute for Vision Research, University of Iowa, Iowa City, IA 52242, USA
| | - Charles Searby
- Department of Pediatrics, University of Iowa, Iowa City, IA 52242, USA
| | - Seongjin Seo
- Department of Ophthalmology and Visual Sciences, Institute for Vision Research, University of Iowa, Iowa City, IA 52242, USA
| | - Ying Hsu
- Department of Ophthalmology and Visual Sciences, Institute for Vision Research, University of Iowa, Iowa City, IA 52242, USA
| | - Sajag Bhattarai
- Department of Ophthalmology and Visual Sciences, Institute for Vision Research, University of Iowa, Iowa City, IA 52242, USA
| | - Val C. Sheffield
- Interdisciplinary Graduate Program in Genetics, University of Iowa, Iowa City, IA 52242, USA
- Department of Ophthalmology and Visual Sciences, Institute for Vision Research, University of Iowa, Iowa City, IA 52242, USA
- Department of Pediatrics, University of Iowa, Iowa City, IA 52242, USA
| | - Arlene V. Drack
- Interdisciplinary Graduate Program in Genetics, University of Iowa, Iowa City, IA 52242, USA
- Department of Ophthalmology and Visual Sciences, Institute for Vision Research, University of Iowa, Iowa City, IA 52242, USA
- Department of Pediatrics, University of Iowa, Iowa City, IA 52242, USA
| |
Collapse
|
8
|
Lu J, Xiong K, Qian X, Choi J, Shim YK, Burnett J, Mardon G, Chen R. Spata7 is required for maintenance of the retinal connecting cilium. Sci Rep 2022; 12:5575. [PMID: 35368022 PMCID: PMC8976851 DOI: 10.1038/s41598-022-09530-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 03/22/2022] [Indexed: 11/09/2022] Open
Abstract
SPATA7, an early onset LCA3 retinal disease gene, encodes a putative scaffold protein that is essential for the proper assembly of the connecting cilium (CC) complex in photoreceptors. Previous studies have shown that SPATA7 interacts with other photoreceptor-specific ciliary proteins, such as RPGR and RPGRIP1, and maintains the integrity of CC integrity. However, although it is known that Spata7 is required for early formation of the CC, it is unclear if Spata7 is also required for the maintenance of the CC. To investigate Spata7 function in the retina at the adult stage, loss of function was induced in the adult retina upon tamoxifen induction of an inducible Spata7 knockout allele (Spata7flox/-; UbcCreERT2/+). The phenotype of mutant retina was characterized by a combination of histology, immunobiochemistry, and electroretinography (ERG). Our results demonstrated that Spata7 is also essential for maintaining the integrity of the mature retinal CC. Loss of Spata7 in adults caused phenotypes similar to those seen in germline mutant mice, including photoreceptor cell degeneration and defective ERG responses. Close examination of the CC revealed significantly shortened NPHP1 length as a result of Spata7 deletion. Furthermore, mislocalization of rhodopsin, leading to ER stress-mediated apoptosis, was observed in the retinal layers. Our results indicate that Spata7 is required not only for the establishment but also for the maintenance of the CC of photoreceptors.
Collapse
Affiliation(s)
- Jiaxiong Lu
- Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Kaitlyn Xiong
- Department of Molecular and Human Genetics, Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, USA
| | - Xinye Qian
- Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Jongsu Choi
- Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Yoon-Kyung Shim
- Department of Pathology, Baylor College of Medicine, Houston, TX, USA
| | - Jacob Burnett
- Department of Pathology, Baylor College of Medicine, Houston, TX, USA
| | - Graeme Mardon
- Department of Pathology, Baylor College of Medicine, Houston, TX, USA
| | - Rui Chen
- Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX, USA.
- Department of Molecular and Human Genetics, Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
9
|
Nakano Y, Susa K, Yanagi T, Hiraoka Y, Suzuki T, Mori T, Ando F, Mandai S, Fujiki T, Rai T, Uchida S, Sohara E. Generation of NPHP1 knockout human pluripotent stem cells by a practical biallelic gene deletion strategy using CRISPR/Cas9 and ssODN. In Vitro Cell Dev Biol Anim 2022; 58:85-95. [PMID: 35165826 DOI: 10.1007/s11626-022-00655-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 02/01/2022] [Indexed: 11/25/2022]
Abstract
CRISPR/Cas9 genome editing underwent remarkable progress and significantly contributed to the development of life sciences. Induced pluripotent stem cells (iPSCs) have also made a relevant contribution to regenerative medicine, pharmacological research, and genetic disease analysis. However, knockout iPSC generation with CRISPR/Cas9 in general has been difficult to achieve using approaches such as frameshift mutations to reproduce genetic diseases with full-length or nearly full-length gene deletions. Moreover, splicing and illegitimate translation could make complete knockouts difficult. Full-length gene deletion methods in iPSCs might solve these problems, although no such approach has been reported yet. In this study, we present a practical two-step gene-editing strategy leading to the precise, biallelic, and complete deletion of the full-length NPHP1 gene in iPSCs, which is the first report of biallelic (compound heterozygous) full-gene deletion in iPSCs using CRISPR/Cas9 and single-stranded oligodeoxynucleotides mainly via single-strand template repair (SSTR). Our strategy requires no selection or substances to enhance SSTR and can be used for the analysis of genetic disorders that are difficult to reproduce by conventional knockout methods.
Collapse
Affiliation(s)
- Yuta Nakano
- Department of Nephrology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8519, Japan
| | - Koichiro Susa
- Department of Nephrology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8519, Japan.
| | - Tomoki Yanagi
- Department of Nephrology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8519, Japan
| | - Yuichi Hiraoka
- Laboratory of Molecular Neuroscience, Medical Research Institute, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan
- Laboratory of Genome Editing for Biomedical Research, Medical Research Institute, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan
| | - Takefumi Suzuki
- Department of Nephrology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8519, Japan
| | - Takayasu Mori
- Department of Nephrology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8519, Japan
| | - Fumiaki Ando
- Department of Nephrology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8519, Japan
| | - Shintaro Mandai
- Department of Nephrology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8519, Japan
| | - Tamami Fujiki
- Department of Nephrology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8519, Japan
| | - Tatemitsu Rai
- Department of Nephrology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8519, Japan
| | - Shinichi Uchida
- Department of Nephrology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8519, Japan
| | - Eisei Sohara
- Department of Nephrology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8519, Japan
| |
Collapse
|
10
|
Birtel J, Spital G, Book M, Habbig S, Bäumner S, Riehmer V, Beck BB, Rosenkranz D, Bolz HJ, Dahmer-Heath M, Herrmann P, König J, Charbel Issa P. NPHP1 gene-associated nephronophthisis is associated with an occult retinopathy. Kidney Int 2021; 100:1092-1100. [PMID: 34153329 DOI: 10.1016/j.kint.2021.06.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 05/04/2021] [Accepted: 06/07/2021] [Indexed: 10/21/2022]
Abstract
Biallelic deletions in the NPHP1 gene are the most frequent molecular defect of nephronophthisis, a kidney ciliopathy and leading cause of hereditary end-stage kidney disease. Nephrocystin 1, the gene product of NPHP1, is also expressed in photoreceptors where it plays an important role in intra-flagellar transport between the inner and outer segments. However, the human retinal phenotype has never been investigated in detail. Here, we characterized retinal features of 16 patients with homozygous deletions of the entire NPHP1 gene. Retinal assessment included multimodal imaging (optical coherence tomography, fundus autofluorescence) and visual function testing (visual acuity, full-field electroretinography, color vision, visual field). Fifteen patients had a mild retinal phenotype that predominantly affected cones, but with relative sparing of the fovea. Despite a predominant cone dysfunction, night vision problems were an early symptom in some cases. The consistent retinal phenotype on optical coherence tomography images included reduced reflectivity and often a granular appearance of the ellipsoid zone, fading or loss of the interdigitation zone, and mild outer retinal thinning. However, there were usually no obvious structural changes visible upon clinical examination and fundus autofluorescence imaging (occult retinopathy). More advanced retinal degeneration might occur with ageing. An identified additional CEP290 variant in one patient with a more severe retinal degeneration may indicate a potential role for genetic modifiers, although this requires further investigation. Thus, diagnostic awareness about this distinct retinal phenotype has implications for the differential diagnosis of nephronophthisis and for individual prognosis of visual function.
Collapse
Affiliation(s)
- Johannes Birtel
- Oxford Eye Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, UK; Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK; Department of Ophthalmology, University of Bonn, Bonn, Germany
| | - Georg Spital
- Eye Center at St. Franziskus-Hospital Münster, Münster, Germany
| | - Marius Book
- Eye Center at St. Franziskus-Hospital Münster, Münster, Germany
| | - Sandra Habbig
- Department of Pediatrics, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Sören Bäumner
- Department of Pediatrics, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Vera Riehmer
- Institute of Human Genetics, University of Cologne, University Hospital of Cologne, Cologne, Germany
| | - Bodo B Beck
- Institute of Human Genetics, University of Cologne, University Hospital of Cologne, Cologne, Germany; Institute of Human Genetics, Center for Molecular Medicine Cologne, Center for Rare Diseases Cologne, University of Cologne, University Hospital of Cologne, Cologne, Germany
| | | | - Hanno J Bolz
- Institute of Human Genetics, University of Cologne, University Hospital of Cologne, Cologne, Germany; Senckenberg Centre for Human Genetics, Frankfurt, Germany
| | - Mareike Dahmer-Heath
- Department of General Pediatrics, University Children's Hospital, Münster, Germany
| | | | - Jens König
- Department of General Pediatrics, University Children's Hospital, Münster, Germany
| | - Peter Charbel Issa
- Oxford Eye Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, UK; Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK.
| |
Collapse
|