1
|
Mazzone E, Aresu L. Comprehensive Analysis of Microsatellite Instability in Canine Cancers: Implications for Comparative Oncology and Personalized Veterinary Medicine. Animals (Basel) 2024; 14:2484. [PMID: 39272269 PMCID: PMC11394029 DOI: 10.3390/ani14172484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 08/20/2024] [Accepted: 08/20/2024] [Indexed: 09/15/2024] Open
Abstract
Microsatellite instability (MSI) is a crucial feature in cancer biology, yet its prevalence and significance in canine cancers remain largely unexplored. This study conducted a comprehensive analysis of MSI across 10 distinct canine cancer histotypes using whole-exome sequencing data from 692 tumor-normal sample pairs. MSI was detected in 64% of tumors, with prevalence varying significantly among cancer types. B-cell lymphomas exhibited the highest MSI burden, contrasting with human studies. A novel "MSI-burden" score was developed, correlating significantly with tumor mutational burden. MSI-high (MSI-H) tumors showed elevated somatic mutation counts compared to MSI-low and microsatellite stable tumors. The study identified 3632 recurrent MSI-affected genomic regions across cancer types. Notably, seven of the ten cancer types exhibited MSI-H tumors, with prevalence ranging from 1.5% in melanomas to 37% in B-cell lymphomas. These findings highlight the potential importance of MSI in canine cancer biology and suggest opportunities for targeted therapies, particularly immunotherapies. The high prevalence of MSI in canine cancers, especially in B-cell lymphomas, warrants further investigation into its mechanistic role and potential as a biomarker for prognosis and treatment response.
Collapse
Affiliation(s)
- Eugenio Mazzone
- Department of Veterinary Sciences, University of Turin, 10095 Grugliasco, Italy
| | - Luca Aresu
- Department of Veterinary Sciences, University of Turin, 10095 Grugliasco, Italy
| |
Collapse
|
2
|
Cahill JA, Smith LA, Gottipati S, Torabi TS, Graim K. Bringing the Genomic Revolution to Comparative Oncology: Human and Dog Cancers. Annu Rev Biomed Data Sci 2024; 7:107-129. [PMID: 38648188 PMCID: PMC11343685 DOI: 10.1146/annurev-biodatasci-102423-111936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
Dogs are humanity's oldest friend, the first species we domesticated 20,000-40,000 years ago. In this unequaled collaboration, dogs have inadvertently but serendipitously been molded into a potent human cancer model. Unlike many common model species, dogs are raised in the same environment as humans and present with spontaneous tumors with human-like comorbidities, immunocompetency, and heterogeneity. In breast, bladder, blood, and several pediatric cancers, in-depth profiling of dog and human tumors has established the benefits of the dog model. In addition to this clinical and molecular similarity, veterinary studies indicate that domestic dogs have relatively high tumor incidence rates. As a result, there are a plethora of data for analysis, the statistical power of which is bolstered by substantial breed-specific variability. As such, dog tumors provide a unique opportunity to interrogate the molecular factors underpinning cancer and facilitate the modeling of new therapeutic targets. This review discusses the emerging field of comparative oncology, how it complements human and rodent cancer studies, and where challenges remain, given the rapid proliferation of genomic resources. Increasingly, it appears that human's best friend is becoming an irreplaceable component of oncology research.
Collapse
Affiliation(s)
- James A Cahill
- University of Florida Genetics Institute, University of Florida, Gainesville, Florida, USA;
- Department of Environmental Engineering Sciences, University of Florida, Gainesville, Florida, USA
| | - Leslie A Smith
- Department of Computer and Information Science and Engineering, University of Florida, Gainesville, Florida, USA
| | - Soumya Gottipati
- Department of Computer Science, Princeton University, Princeton, New Jersey, USA
| | - Tina Salehi Torabi
- Department of Computer and Information Science and Engineering, University of Florida, Gainesville, Florida, USA
| | - Kiley Graim
- Department of Computer and Information Science and Engineering, University of Florida, Gainesville, Florida, USA
- University of Florida Health Cancer Center, University of Florida, Gainesville, Florida, USA
- University of Florida Genetics Institute, University of Florida, Gainesville, Florida, USA;
| |
Collapse
|
3
|
Bryan JN. Updates in Osteosarcoma. Vet Clin North Am Small Anim Pract 2024; 54:523-539. [PMID: 38158305 DOI: 10.1016/j.cvsm.2023.12.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
Clinical care of osteosarcoma (OSA) in dogs has seen little change during the past 2 decades, relying on amputation and platinum-based chemotherapy for pain control and survival. Recent advancements offer hope for improved outcomes. Genomic research reveals shared genetic abnormalities between canine and human OSA. Multidimensional imaging provides valuable staging and prognostic information. Limb-sparing approaches including stereotactic body radiation therapy are routine. Ablative therapies such as microwave ablation and histotripsy show promise. Immunotherapy including cell therapy and immune checkpoint inhibition are available. Radiopharmaceuticals are tuned to target OSA cells directly. These innovations may enhance treatment and prognosis for dogs with OSA.
Collapse
Affiliation(s)
- Jeffrey N Bryan
- Comparative Oncology Radiobiology and Epigenetics Laboratory, University of Missouri Columbia, Ellis Fischel Cancer Center, 900 East Campus Drive, Columbia, MO 65211, USA.
| |
Collapse
|
4
|
Meuten TK, Dean GA, Thamm DH. Review: The PI3K-AKT-mTOR signal transduction pathway in canine cancer. Vet Pathol 2024; 61:339-356. [PMID: 37905509 DOI: 10.1177/03009858231207021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
Tumors in dogs and humans share many similar molecular and genetic features, incentivizing a better understanding of canine neoplasms not only for the purpose of treating companion animals, but also to facilitate research of spontaneously developing tumors with similar biologic behavior and treatment approaches in an immunologically competent animal model. Multiple tumor types of both species have similar dysregulation of signal transduction through phosphatidylinositol 3-kinase (PI3K), protein kinase B (PKB; AKT), and mechanistic target of rapamycin (mTOR), collectively known as the PI3K-AKT-mTOR pathway. This review aims to delineate the pertinent aspects of the PI3K-AKT-mTOR signaling pathway in health and in tumor development. It will then present a synopsis of current understanding of PI3K-AKT-mTOR signaling in important canine cancers and advancements in targeted inhibitors of this pathway.
Collapse
|
5
|
Norquest CJ, Rogic A, Gimotty PA, Maitz CA, Rindt H, Ashworth HL, Bryan JN, Donnelly LL, McCleary-Wheeler AL, Flesner BK. Effects of neoadjuvant zoledronate and radiation therapy on cell survival, cell cycle distribution, and clinical status in canine osteosarcoma. Front Vet Sci 2024; 11:1237084. [PMID: 38362299 PMCID: PMC10867971 DOI: 10.3389/fvets.2024.1237084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 01/12/2024] [Indexed: 02/17/2024] Open
Abstract
Introduction Zoledronic acid (ZOL) is a third-generation bisphosphonate with a higher affinity for bone resorption areas than earlier bisphosphonates (i.e., pamidronate, PAM). In human medicine, ZOL provides improved bone pain relief and prolonged time to skeletal-related events compared to its older generational counterparts. Preclinical studies have investigated its role as an anti-neoplastic agent, both independently and synergistically, with radiation therapy (RT). ZOL and RT act synergistically in several neoplastic human cell lines: prostate, breast, osteosarcoma, and fibrosarcoma. However, the exact mechanism of ZOL's radiosensitization has not been fully elucidated. Methods We investigated ZOL's ability to induce apoptosis in canine osteosarcoma cell lines treated with various doses of megavoltage external beam radiotherapy. Second, we evaluated cell cycle arrest in ZOL-treated cells to assess several neo-adjuvant time points. Finally, we treated 20 dogs with naturally occurring appendicular OS with 0.1 mg/kg ZOL IV 24 h before receiving 8 Gy of RT (once weekly fraction x 4 weeks). Results We found that apoptosis was increased in all ZOL-treated cell lines compared to controls, and the combination of ZOL and RT resulted in dissimilar apoptosis between Abrams and D-17 and HMPOS cell lines. Cell cycle arrest (G2/M phase) was minimal and variable between cell lines but perhaps greatest at 48 h post-ZOL treatment. Only 10% of dogs treated with ZOL and RT developed pathologic fractures, compared to 44% of dogs historically treated with PAM and RT (p = 0.027). Discussion ZOL and RT appear to be a well-tolerated combination treatment scheme for non-surgical candidates; future studies must elucidate the ideal timing of ZOL.
Collapse
Affiliation(s)
- Carissa J. Norquest
- Department of Veterinary Medicine & Surgery, University of Missouri College of Veterinary Medicine, Columbia, MO, United States
| | - Anita Rogic
- Department of Veterinary Medicine & Surgery, University of Missouri College of Veterinary Medicine, Columbia, MO, United States
| | - Phyllis A. Gimotty
- Department of Biostatistics, Epidemiology and Informatics, University of Pennsylvania School of Medicine, Philadelphia, PA, United States
| | - Charles A. Maitz
- Department of Veterinary Medicine & Surgery, University of Missouri College of Veterinary Medicine, Columbia, MO, United States
| | - Hansjorg Rindt
- Department of Veterinary Medicine & Surgery, University of Missouri College of Veterinary Medicine, Columbia, MO, United States
| | - Hayley L. Ashworth
- Department of Veterinary Medicine & Surgery, University of Missouri College of Veterinary Medicine, Columbia, MO, United States
| | - Jeffrey N. Bryan
- Department of Veterinary Medicine & Surgery, University of Missouri College of Veterinary Medicine, Columbia, MO, United States
| | - Lindsay L. Donnelly
- Department of Veterinary Medicine & Surgery, University of Missouri College of Veterinary Medicine, Columbia, MO, United States
| | - Angela L. McCleary-Wheeler
- Department of Veterinary Medicine & Surgery, University of Missouri College of Veterinary Medicine, Columbia, MO, United States
| | - Brian K. Flesner
- Department of Veterinary Medicine & Surgery, University of Missouri College of Veterinary Medicine, Columbia, MO, United States
- Department of Clinical Sciences & Advanced Medicine, University of Pennsylvania School of Veterinary Medicine, Philadelphia, PA, United States
| |
Collapse
|
6
|
London CA, Gardner H, Zhao S, Knapp DW, Utturkar SM, Duval DL, Chambers MR, Ostrander E, Trent JM, Kuffel G. Leading the pack: Best practices in comparative canine cancer genomics to inform human oncology. Vet Comp Oncol 2023; 21:565-577. [PMID: 37778398 PMCID: PMC12065084 DOI: 10.1111/vco.12935] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 08/17/2023] [Accepted: 08/18/2023] [Indexed: 10/03/2023]
Abstract
Pet dogs develop spontaneous cancers at a rate estimated to be five times higher than that of humans, providing a unique opportunity to study disease biology and evaluate novel therapeutic strategies in a model system that possesses an intact immune system and mirrors key aspects of human cancer biology. Despite decades of interest, effective utilization of pet dog cancers has been hindered by a limited repertoire of necessary cellular and molecular reagents for both in vitro and in vivo studies, as well as a dearth of information regarding the genomic landscape of these cancers. Recently, many of these critical gaps have been addressed through the generation of a highly annotated canine reference genome, the creation of several tools necessary for multi-omic analysis of canine tumours, and the development of a centralized repository for key genomic and associated clinical information from canine cancer patients, the Integrated Canine Data Commons. Together, these advances have catalysed multidisciplinary efforts designed to integrate the study of pet dog cancers more effectively into the translational continuum, with the ultimate goal of improving human outcomes. The current review summarizes this recent progress and provides a guide to resources and tools available for comparative study of pet dog cancers.
Collapse
Affiliation(s)
- Cheryl A. London
- Cummings School of Veterinary Medicine, Tufts University, North Grafton, Massachusetts, USA
| | - Heather Gardner
- Cummings School of Veterinary Medicine, Tufts University, North Grafton, Massachusetts, USA
| | - Shaying Zhao
- University of Georgia Cancer Center, University of Georgia, Athens, Georgia, USA
| | - Deborah W. Knapp
- College of Veterinary Medicine, Purdue University, West Lafayette, Indiana, USA
| | - Sagar M. Utturkar
- Purdue Institute for Cancer Research, Purdue University, West Lafayette, Indiana, USA
| | - Dawn L. Duval
- College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado, USA
| | | | - Elaine Ostrander
- Cancer Genetics and Comparative Genomics Branch, National Cancer Institute, Bethesda, Maryland, USA
| | - Jeffrey M. Trent
- Translational Genomics Research Institute, Phoenix, Arizona, USA
| | - Gina Kuffel
- National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
7
|
Klosowski M, Haines L, Alfino L, McMellen A, Leibowitz M, Regan D. Naturally occurring canine sarcomas: Bridging the gap from mouse models to human patients through cross-disciplinary research partnerships. Front Oncol 2023; 13:1130215. [PMID: 37035209 PMCID: PMC10076632 DOI: 10.3389/fonc.2023.1130215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 02/20/2023] [Indexed: 04/11/2023] Open
Abstract
Fueled by support from the National Cancer Institute's "Cancer Moonshot" program, the past few years have witnessed a renewed interest in the canine spontaneous cancer model as an invaluable resource in translational oncology research. Increasingly, there is awareness that pet dogs with cancer provide an accessible bridge to improving the efficiency of cancer drug discovery and clinical therapeutic development. Canine tumors share many biological, genetic, and histologic features with their human tumor counterparts, and most importantly, retain the complexities of naturally occurring drug resistance, metastasis, and tumor-host immune interactions, all of which are difficult to recapitulate in induced or genetically engineered murine tumor models. The utility of canine models has been particularly apparent in sarcoma research, where the increased incidence of sarcomas in dogs as compared to people has facilitated comparative research resulting in treatment advances benefitting both species. Although there is an increasing awareness of the advantages in using spontaneous canine sarcoma models for research, these models remain underutilized, in part due to a lack of more permanent institutional and cross-institutional infrastructure to support partnerships between veterinary and human clinician-scientists. In this review, we provide an updated overview of historical and current applications of spontaneously occurring canine tumor models in sarcoma research, with particular attention to knowledge gaps, limitations, and growth opportunities within these applications. Furthermore, we propose considerations for working within existing veterinary translational and comparative oncology research infrastructures to maximize the benefit of partnerships between veterinary and human biomedical researchers within and across institutions to improve the utility and application of spontaneous canine sarcomas in translational oncology research.
Collapse
Affiliation(s)
- Marika Klosowski
- Flint Animal Cancer Center, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, United States
- Department of Microbiology, Immunology, and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, United States
| | - Laurel Haines
- Flint Animal Cancer Center, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, United States
- Department of Microbiology, Immunology, and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, United States
| | - Lauren Alfino
- Flint Animal Cancer Center, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, United States
- Department of Microbiology, Immunology, and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, United States
| | - Alexandra McMellen
- Center for Cancer and Blood Disorders, Children’s Hospital Colorado, Aurora, CO, United States
| | - Michael Leibowitz
- Center for Cancer and Blood Disorders, Children’s Hospital Colorado, Aurora, CO, United States
| | - Daniel Regan
- Flint Animal Cancer Center, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, United States
- Department of Microbiology, Immunology, and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, United States
| |
Collapse
|
8
|
Gardner HL, Fenger JM, Roberts RD, London CA. Characterizing the metabolic role of STAT3 in canine osteosarcoma. Vet Comp Oncol 2022; 20:817-824. [PMID: 35608271 PMCID: PMC9669091 DOI: 10.1111/vco.12841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Revised: 05/05/2022] [Accepted: 05/19/2022] [Indexed: 12/30/2022]
Abstract
Signal transducer and activator of transcription 3 (STAT3) dysregulation has been characterized in canine OS, with previous data suggesting that constitutive STAT3 activation contributes to survival and proliferation in OS cell lines in vitro. Recently, the contribution of STAT3 to tumour metabolism has been described across several tumour histologies, and understanding the metabolic implications of STAT3 loss may elucidate novel therapeutic approaches with synergistic activity. The objective of this work was to characterize metabolic benchmarks associated with STAT3 loss in canine OS. STAT3 expression and activation was evaluated using western blotting in canine OS cell lines OSCA8 and Abrams. STAT3 was deleted from these OS cell lines using CRISPR-Cas9, and the effects on proliferation, invasion and metabolism (respirometry, intracellular lactate) were determined. Loss of STAT3 was associated with decreased basal and compensatory glycolysis in canine OS cell lines, without modulation of cellular proliferation. Loss of STAT3 also resulted in diminished invasive capacity in vitro. Interestingly, the absence of STAT3 did not impact sensitivity to doxorubicin in vitro. Our data demonstrate that loss of STAT3 modulates features of aerobic glycolysis in canine OS impacting capacities for cellular invasions, suggesting a role for this transcription factor in metastasis.
Collapse
Affiliation(s)
- Heather L. Gardner
- Cummings School of Veterinary MedicineTufts UniversityNorth GraftonMassachusettsUSA
| | - Joelle M. Fenger
- College of Veterinary MedicineThe Ohio State UniversityColumbusOhioUSA,Present address:
Ethos Veterinary Health and Ethos Discovery (501c3)WoburnMassachusettsUSA
| | - Ryan D. Roberts
- Research Institute at Nationwide Children's HospitalColumbusOhioUSA
| | - Cheryl A. London
- Cummings School of Veterinary MedicineTufts UniversityNorth GraftonMassachusettsUSA
| |
Collapse
|
9
|
Megquier K, Turner-Maier J, Morrill K, Li X, Johnson J, Karlsson EK, London CA, Gardner HL. The genomic landscape of canine osteosarcoma cell lines reveals conserved structural complexity and pathway alterations. PLoS One 2022; 17:e0274383. [PMID: 36099278 PMCID: PMC9469990 DOI: 10.1371/journal.pone.0274383] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 08/25/2022] [Indexed: 01/09/2023] Open
Abstract
The characterization of immortalized canine osteosarcoma (OS) cell lines used for research has historically been based on phenotypic features such as cellular morphology and expression of bone specific markers. With the increasing use of these cell lines to investigate novel therapeutic approaches prior to in vivo translation, a much more detailed understanding regarding the genomic landscape of these lines is required to ensure accurate interpretation of findings. Here we report the first whole genome characterization of eight canine OS cell lines, including single nucleotide variants, copy number variants and other structural variants. Many alterations previously characterized in primary canine OS tissue were observed in these cell lines, including TP53 mutations, MYC copy number gains, loss of CDKN2A, PTEN, DLG2, MAGI2, and RB1 and structural variants involving SETD2, DLG2 and DMD. These data provide a new framework for understanding how best to incorporate in vitro findings generated using these cell lines into the design of future clinical studies involving dogs with spontaneous OS.
Collapse
Affiliation(s)
- Kate Megquier
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America
| | - Jason Turner-Maier
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America
| | - Kathleen Morrill
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America
- University of Massachusetts Chan Medical School, Worcester, Massachusetts, United States of America
| | - Xue Li
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America
- University of Massachusetts Chan Medical School, Worcester, Massachusetts, United States of America
| | - Jeremy Johnson
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America
| | - Elinor K. Karlsson
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America
- University of Massachusetts Chan Medical School, Worcester, Massachusetts, United States of America
| | - Cheryl A. London
- Cummings School of Veterinary Medicine at Tufts University, North Grafton, Massachusetts, United States of America
| | - Heather L. Gardner
- Cummings School of Veterinary Medicine at Tufts University, North Grafton, Massachusetts, United States of America
| |
Collapse
|