1
|
Song X, Mei P, Dou T, Liu Q, Li L. Multi-Omics Analysis Reveals the Resistance Mechanism and the Pathogens Causing Root Rot of Coptis chinensis. Microbiol Spectr 2023; 11:e0480322. [PMID: 36809123 PMCID: PMC10101010 DOI: 10.1128/spectrum.04803-22] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 01/31/2023] [Indexed: 02/23/2023] Open
Abstract
Coptis chinensis is a traditional Chinese medicinal herb used for more than 2,000 years. Root rot in C. chinensis can cause brown discoloration (necrosis) in the fibrous roots and rhizomes, leading to plants wilting and dying. However, little information exists about the resistance mechanism and the potential pathogens of the root rot of C. chinensis plants. As a result, in order to investigate the relationship between the underlying molecular processes and the pathogenesis of root rot, transcriptome and microbiome analyses were performed on healthy and diseased C. chinensis rhizomes. This study found that root rot can lead to the significant reduction of medicinal components of Coptis, including thaliotrine, columbamine, epiberberin, coptisine, palmatine chloride, and berberine, affecting its efficacy quality. In the present study, Diaporthe eres, Fusarium avenaceum, and Fusarium solani were identified as the main pathogens causing root rot in C. chinensis. At the same time, the genes in phenylpropanoid biosynthesis, plant hormone signal transduction, plant-pathogen interaction, and alkaloid synthesis pathways were involved in the regulation of root rot resistance and medicinal component synthesis. In addition, harmful pathogens (D. eres, F. avenaceum and F. solani) also induce the expression of related genes in C. chinensis root tissues to reduce active medicinal ingredients. These results provide insights into the root rot tolerance study and pave the way for process disease resistance breeding and quality production of C. chinensis. IMPORTANCE Root rot disease significantly reduces the medicinal quality of Coptis chinensis. In the present study, results found that the C. chinensis fibrous and taproot have different tactics in response to rot pathogen infection. Diaporthe eres, Fusarium avenaceum, and Fusarium solani were isolated and identified to cause different degrees of C. chinensis root rot. These results are helpful for researchers to further explore the mechanism of resistance to rhizoma Coptis root rot.
Collapse
Affiliation(s)
- Xuhong Song
- Chongqing Academy of Chinese Materia Medica, Chongqing, People’s Republic of China
| | - Pengying Mei
- Chongqing Academy of Chinese Materia Medica, Chongqing, People’s Republic of China
| | - Tao Dou
- Chongqing Academy of Chinese Materia Medica, Chongqing, People’s Republic of China
| | - Qundong Liu
- Chongqing Academy of Chinese Materia Medica, Chongqing, People’s Republic of China
| | - Longyun Li
- Chongqing Academy of Chinese Materia Medica, Chongqing, People’s Republic of China
| |
Collapse
|
2
|
Drais MI, Rossini L, Turco S, Faluschi A, Mazzaglia A. Modelling germination and mycelium growth rates of Monostichella coryli under constant temperature conditions. FUNGAL ECOL 2023. [DOI: 10.1016/j.funeco.2022.101201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
3
|
Camardo Leggieri M, Arciuolo R, Chiusa G, Castello G, Spigolon N, Battilani P. DEFHAZ: A Mechanistic Weather-Driven Predictive Model for Diaporthe eres Infection and Defective Hazelnut Outbreaks. PLANTS (BASEL, SWITZERLAND) 2022; 11:3553. [PMID: 36559665 PMCID: PMC9784339 DOI: 10.3390/plants11243553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/09/2022] [Accepted: 12/13/2022] [Indexed: 06/17/2023]
Abstract
The browning of the internal tissues of hazelnut kernels, which are visible when the nuts are cut in half, as well as the discolouration and brown spots on the kernel surface, are important defects that are mainly attributed to Diaporthe eres. The knowledge regarding the Diaporthe eres infection cycle and its interaction with hazelnut crops is incomplete. Nevertheless, we developed a mechanistic model called DEFHAZ. We considered georeferenced data on the occurrence of hazelnut defects from 2013 to 2020 from orchards in the Caucasus region and Turkey, supported by meteorological data, to run and validate the model. The predictive model inputs are the hourly meteorological data (air temperature, relative humidity, and rainfall), and the model output is the cumulative index (Dh-I), which we computed daily during the growing season till ripening/harvest time. We established the probability function, with a threshold of 1% of defective hazelnuts, to define the defect occurrence risk. We compared the predictions at early and full ripening with the observed data at the corresponding crop growth stages. In addition, we compared the predictions at early ripening with the defects observed at full ripening. Overall, the correct predictions were >80%, with <16% false negatives, which confirmed the model accuracy in predicting hazelnut defects, even in advance of the harvest. The DEFHAZ model could become a valuable support for hazelnut stakeholders.
Collapse
Affiliation(s)
- Marco Camardo Leggieri
- Department of Sustainable Crop Production, Università Cattolica del Sacro Cuore, 29121 Piacenza, PC, Italy
| | - Roberta Arciuolo
- Department of Sustainable Crop Production, Università Cattolica del Sacro Cuore, 29121 Piacenza, PC, Italy
| | - Giorgio Chiusa
- Department of Sustainable Crop Production, Università Cattolica del Sacro Cuore, 29121 Piacenza, PC, Italy
| | - Giuseppe Castello
- Soremartec Italia S.r.l., Piazzale Pietro Ferrero 1, 12051 Alba, CN, Italy
| | - Nicola Spigolon
- Soremartec Italia S.r.l., Piazzale Pietro Ferrero 1, 12051 Alba, CN, Italy
| | - Paola Battilani
- Department of Sustainable Crop Production, Università Cattolica del Sacro Cuore, 29121 Piacenza, PC, Italy
| |
Collapse
|
4
|
Hilário S, Gonçalves MFM. Endophytic Diaporthe as Promising Leads for the Development of Biopesticides and Biofertilizers for a Sustainable Agriculture. Microorganisms 2022; 10:2453. [PMID: 36557707 PMCID: PMC9784053 DOI: 10.3390/microorganisms10122453] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/06/2022] [Accepted: 12/08/2022] [Indexed: 12/15/2022] Open
Abstract
Plant pathogens are responsible for causing economic and production losses in several crops worldwide, thus reducing the quality and quantity of agricultural supplies. To reduce the usage of chemically synthesized pesticides, strategies and approaches using microorganisms are being used in plant disease management. Most of the studies concerning plant-growth promotion and biological agents to control plant diseases are mainly focused on bacteria. In addition, a great portion of registered and commercialized biopesticides are bacterial-based products. Despite fungal endophytes having been identified as promising candidates for their use in biological control, it is of the utmost importance to develop and improve the existing knowledge on this research field. The genus Diaporthe, encompasses plant pathogens, saprobes and endophytes that have been screened for secondary metabolite, mainly due to their production of polyketides and a variety of unique bioactive metabolites with agronomic importance. Some of these metabolites exhibit antifungal and antibacterial activity for controlling plant pathogens, and phytotoxic activity for the development of potential mycoherbicides. Moreover, species of Diaporthe are reported as promising agents in the development of biofertilizers. For this reason, in this review we summarize the potential of Diaporthe species to produce natural products with application in agriculture and describe the benefits of these fungi to promote their host plant's growth.
Collapse
Affiliation(s)
- Sandra Hilário
- Centre for Environmental and Marine Studies (CESAM), Department of Biology, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Micael F. M. Gonçalves
- Division of Microbiology, Department of Pathology, Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal
| |
Collapse
|
5
|
Valeriano T, Fischer K, Ginaldi F, Giustarini L, Castello G, Bregaglio S. Rotten Hazelnuts Prediction via Simulation Modeling-A Case Study on the Turkish Hazelnut Sector. FRONTIERS IN PLANT SCIENCE 2022; 13:766493. [PMID: 35444678 PMCID: PMC9014268 DOI: 10.3389/fpls.2022.766493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Accepted: 02/21/2022] [Indexed: 06/14/2023]
Abstract
The quality defects of hazelnut fruits comprise changes in morphology and taste, and their intensity mainly depends on seasonal environmental conditions. The strongest off-flavor of hazelnuts is known as rotten defect, whose candidate causal agents are a complex of fungal pathogens, with Diaporthe as the dominant genus. Timely indications on the expected incidence of rotten defect would be essential for buyers to identify areas where hazelnut quality will be superior, other than being useful for farmers to have the timely indications of the risk of pathogens infection. Here, we propose a rotten defect forecasting model, and we apply it in the seven main hazelnut producing municipalities in Turkey. We modulate plant susceptibility to fungal infection according to simulated hazelnut phenology, and we reproduce the key components of the Diaporthe spp. epidemiological cycle via a process-based simulation model. A model sensitivity analysis has been performed under contrasting weather conditions to select most relevant parameters for calibration, which relied on weekly phenological observations and the post-harvest analyses of rotten incidence in the period 2016-2019, conducted in 22 orchards. The rotten simulation model reproduced rotten incidence data in calibration and validation datasets with a mean absolute error below 1.8%. The dataset used for model validation (321 additional sampling locations) has been characterized by large variability of rotten incidence, in turn contributing to decrease the correlation between reference and simulated data (R 2 = 0.4 and 0.21 in West and East Black Sea region, respectively). This denotes the key effect of other environmental and agronomic factors on rotten incidence, which are not yet taken into account by the predictive workflow and will be considered in further improvements. When applied in spatially distributed simulations, the model differentiated the rotten incidence across municipalities, and reproduced the interannual variability of rotten incidence. Our results confirmed that the rotten defect is strictly dependent on precipitation amount and timing, and that plant susceptibility is crucial to trigger fungal infections. Future steps will envisage the application of the rotten simulation model to other hazelnut producing regions, before being operationally used for in-season forecasting activities.
Collapse
Affiliation(s)
- Taynara Valeriano
- Council for Agricultural Research and Economics (CREA), Research Centre for Agriculture and Environment, Bologna, Italy
- Ferrero Hazelnut Company, Ferrero Trading Lux S.A., Senningerberg, Luxembourg
| | - Kim Fischer
- Ferrero Hazelnut Company, Ferrero Trading Lux S.A., Senningerberg, Luxembourg
| | - Fabrizio Ginaldi
- Council for Agricultural Research and Economics (CREA), Research Centre for Agriculture and Environment, Bologna, Italy
| | | | | | - Simone Bregaglio
- Council for Agricultural Research and Economics (CREA), Research Centre for Agriculture and Environment, Bologna, Italy
| |
Collapse
|
6
|
Gao H, Pan M, Tian C, Fan X. Cytospora and Diaporthe Species Associated With Hazelnut Canker and Dieback in Beijing, China. Front Cell Infect Microbiol 2021; 11:664366. [PMID: 34408987 PMCID: PMC8366500 DOI: 10.3389/fcimb.2021.664366] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 04/16/2021] [Indexed: 11/29/2022] Open
Abstract
Hazelnut (Corylus heterophylla Fisch.) is an important nut crop in China but has been declining owing to the destructive effects of fungal branch canker and dieback. The identification and management of these pathogens are difficult because of the lack of attention to branch canker, insufficient understanding of phylogenetic, and overlapping morphological characteristics of the pathogens. In total, 51 strains were isolated from Chinese wild hazelnut in this study, and three species of Cytospora and two of Diaporthe were identified through morphological observation and multi-locus phylogenetic analyses (ITS, act, rpb2, tef1-α, and tub2 for Cytospora; ITS, cal, his3, tef1-α, and tub2 for Diaporthe). Three new species, Cytospora corylina, C. curvispora, and Diaporthe corylicola, and two known species, Cytospora leucostoma and Diaporthe eres, grew at 5-30°C and a pH of 3.0-11.0, with optimum growth at approximately 25°C and pH 4.0-7.0. Additionally, the effects of six carbon sources on mycelial growth were investigated. This study explored the main pathogenic fungi species of Corylus heterophylla, completed the corresponding database of pathogenic fungi information, and clarified their biological characteristics. Moreover, the results of this study provided a theoretical basis for Corylus heterophylla disease management and prevention in China.
Collapse
Affiliation(s)
| | | | | | - Xinlei Fan
- The Key Laboratory for Silviculture and Conservation of Ministry of Education, Beijing Forestry University, Beijing, China
| |
Collapse
|
7
|
Ariyawansa HA, Tsai I, Wang JY, Withee P, Tanjira M, Lin SR, Suwannarach N, Kumla J, Elgorban AM, Cheewangkoon R. Molecular Phylogenetic Diversity and Biological Characterization of Diaporthe Species Associated with Leaf Spots of Camellia sinensis in Taiwan. PLANTS (BASEL, SWITZERLAND) 2021; 10:1434. [PMID: 34371637 PMCID: PMC8309328 DOI: 10.3390/plants10071434] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 07/12/2021] [Accepted: 07/12/2021] [Indexed: 11/16/2022]
Abstract
Camellia sinensis is one of the major crops grown in Taiwan and has been widely cultivated around the island. Tea leaves are prone to various fungal infections, and leaf spot is considered one of the major diseases in Taiwan tea fields. As part of a survey on fungal species causing leaf spots on tea leaves in Taiwan, 19 fungal strains morphologically similar to the genus Diaporthe were collected. ITS (internal transcribed spacer), tef1-α (translation elongation factor 1-α), tub2 (beta-tubulin), and cal (calmodulin) gene regions were used to construct phylogenetic trees and determine the evolutionary relationships among the collected strains. In total, six Diaporthe species, including one new species, Diaporthe hsinchuensis, were identified as linked with leaf spot of C. sinensis in Taiwan based on both phenotypic characters and phylogeny. These species were further characterized in terms of their pathogenicity, temperature, and pH requirements under laboratory conditions. Diaporthe tulliensis, D. passiflorae, and D. perseae were isolated from C. sinensis for the first time. Furthermore, pathogenicity tests revealed that, with wound inoculation, only D. hongkongensis was pathogenic on tea leaves. This investigation delivers the first assessment of Diaporthe taxa related to leaf spots on tea in Taiwan.
Collapse
Affiliation(s)
- Hiran A. Ariyawansa
- Department of Plant Pathology and Microbiology, College of Bioresources and Agriculture, National Taiwan University, Taipei 10617, Taiwan; (I.T.); (J.-Y.W.)
| | - Ichen Tsai
- Department of Plant Pathology and Microbiology, College of Bioresources and Agriculture, National Taiwan University, Taipei 10617, Taiwan; (I.T.); (J.-Y.W.)
- Biodiversity and Climate Research Centre (BiK-F), 60325 Frankfurt am Main, Germany
- Department of Biological Science, Goethe University Frankfurt, 60438 Frankfurt am Main, Germany
| | - Jian-Yuan Wang
- Department of Plant Pathology and Microbiology, College of Bioresources and Agriculture, National Taiwan University, Taipei 10617, Taiwan; (I.T.); (J.-Y.W.)
| | - Patchareeya Withee
- Department of Entomology and Plant Pathology, Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand; (P.W.); (M.T.)
| | - Medsaii Tanjira
- Department of Entomology and Plant Pathology, Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand; (P.W.); (M.T.)
| | - Shiou-Ruei Lin
- Department of Tea Agronomy, Tea Research and Extension Station, Taoyuan 32654, Taiwan;
| | - Nakarin Suwannarach
- Research Centre of Microbial Diversity and Sustainable Utilization, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand; (N.S.); (J.K.)
- Innovative Agriculture Research Center, Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Jaturong Kumla
- Research Centre of Microbial Diversity and Sustainable Utilization, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand; (N.S.); (J.K.)
- Innovative Agriculture Research Center, Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Abdallah M. Elgorban
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia;
| | - Ratchadawan Cheewangkoon
- Department of Entomology and Plant Pathology, Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand; (P.W.); (M.T.)
- Innovative Agriculture Research Center, Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand
| |
Collapse
|