1
|
Wang MY, Chen KL, Huang YY, Chen SF, Wang RZ, Zhang Y, Hu HY, Ma LZ, Liu WS, Wang J, Xin JW, Zhang X, Li MM, Guo Y, Dong Q, Cheng W, Tan L, Cui M, Zhang YR, Yu JT. Clinical utility of cerebrospinal fluid Alzheimer's disease biomarkers in the diagnostic workup of complex patients with cognitive impairment. Transl Psychiatry 2025; 15:130. [PMID: 40195333 PMCID: PMC11976989 DOI: 10.1038/s41398-025-03345-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 03/02/2025] [Accepted: 03/24/2025] [Indexed: 04/09/2025] Open
Abstract
Cerebrospinal fluid (CSF) biomarkers have been widely adopted in Alzheimer's disease (AD) diagnosis. However, no studies focused on the application of CSF biomarkers in the clinical practice of complex and atypical patients with cognitive impairment in China. This study aimed to evaluate the added value of CSF AD biomarkers in cognitively impaired patients with complex conditions in a memory clinical setting. A total of 633 participants were included from the National Center for Neurological Disorders in Shanghai, China. The CSF AD biomarkers were measured with ELISA. Cutoff values were firstly identified using Youden's index. The neurologists proposed etiology diagnosis with a percentage estimate of their confidence and prescribed medication before and after CSF disclosure. Changes in etiological diagnosis, diagnostic confidence, and management plan were compared across the groups. Of the 633 patients (mean [SD] age, 61.1 [11.3] years; 295 males [46.6%]), 372 (58.8%) were diagnosed with dementia, 103 (16.3%) with mild cognitive impairment, and 158 (24.9%) with subjective cognitive decline. Using those pre-defined cutoffs, we categorized patients into 3 groups: Alzheimer's continuum (68.1%), non-AD pathologic change (11.1%), and normal AD biomarkers (20.8%). After CSF disclosure, the proposed etiology changed in 158 (25.0%) participants and the prescribed medication changed in 200 (31.6%) patients. Mean diagnostic confidence increased from 69.5-83.0% (+13.5%; P < 0.001). In conclusion, CSF AD biomarkers significantly impacted the diagnosis, diagnostic confidence, and treatment plans for Chinese patients with complex cognitive impairment. CSF AD biomarkers are a useful tool for clinicians beyond routine clinical assessment.
Collapse
Affiliation(s)
- Ming-Yu Wang
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
- Department of Neurology, Weifang People's Hospital, Weifang, China
| | - Ke-Liang Chen
- Department of Neurology and National Center for Neurological Disorders, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yu-Yuan Huang
- Department of Neurology and National Center for Neurological Disorders, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China
| | - Shu-Fen Chen
- Department of Neurology and National Center for Neurological Disorders, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China
| | - Rong-Ze Wang
- Department of Neurology and National Center for Neurological Disorders, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yi Zhang
- Department of Neurology and National Center for Neurological Disorders, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China
| | - He-Ying Hu
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Ling-Zhi Ma
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Wei-Shi Liu
- Department of Neurology and National Center for Neurological Disorders, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jun Wang
- Department of Neurology and Centre for Clinical Neuroscience, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Jia-Wei Xin
- Department of Neurology, Fujian Institute of Geriatrics, Fujian Medical University Union Hospital, Fuzhou, China
| | - Xue Zhang
- Department of Neurology, Qingdao Central Hospital, University of Health and Rehabilitation Sciences, Qingdao, China
| | - Meng-Meng Li
- Department of Neurology and National Center for Neurological Disorders, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yu Guo
- Department of Neurology and National Center for Neurological Disorders, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China
| | - Qiang Dong
- Department of Neurology and National Center for Neurological Disorders, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China
| | - Wei Cheng
- Department of Neurology and National Center for Neurological Disorders, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China
- Institute of Science and Technology for Brain-inspired Intelligence, Fudan University, Shanghai, China
- Key Laboratory of Computational Neuroscience and Brain-inspired Intelligence, Fudan University, Ministry of Education, Shanghai, China
- Fudan ISTBI-ZJNU Algorithm Centre for Brain-inspired Intelligence, Zhejiang Normal University, Jinhua, Zhejiang, China
| | - Lan Tan
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China.
| | - Mei Cui
- Department of Neurology and National Center for Neurological Disorders, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China.
| | - Ya-Ru Zhang
- Department of Neurology and National Center for Neurological Disorders, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China.
| | - Jin-Tai Yu
- Department of Neurology and National Center for Neurological Disorders, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China.
| |
Collapse
|
2
|
Xiao H, Wang J, Wan S. WIMOAD: Weighted Integration of Multi-Omics data for Alzheimer's Disease (AD) Diagnosis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.25.614862. [PMID: 39386613 PMCID: PMC11463407 DOI: 10.1101/2024.09.25.614862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
As the most common subtype of dementia, Alzheimer's disease (AD) is characterized by a progressive decline in cognitive functions, especially in memory, thinking, and reasoning ability. Early diagnosis and interventions enable the implementation of measures to reduce or slow further regression of the disease, preventing individuals from severe brain function decline. The current framework of AD diagnosis depends on A/T/(N) biomarkers detection from cerebrospinal fluid or brain imaging data, which is invasive and expensive during the data acquisition process. Moreover, the pathophysiological changes of AD accumulate in amino acids, metabolism, neuroinflammation, etc., resulting in heterogeneity in newly registered patients. Recently, next generation sequencing (NGS) technologies have found to be a non-invasive, efficient and less-costly alternative on AD screening. However, most of existing studies rely on single omics only. To address these concerns, we introduce WIMOAD, a weighted integration of multi-omics data for AD diagnosis. WIMOAD synergistically leverages specialized classifiers for patients' paired gene expression and methylation data for multi-stage classification. The resulting scores were then stacked with MLP-based meta-models for performance improvement. The prediction results of two distinct meta-models were integrated with optimized weights for the final decision-making of the model, providing higher performance than using single omics only. Remarkably, WIMOAD achieves significantly higher performance than using single omics alone in the classification tasks. The model's overall performance also outperformed most existing approaches, highlighting its ability to effectively discern intricate patterns in multi-omics data and their correlations with clinical diagnosis results. In addition, WIMOAD also stands out as a biologically interpretable model by leveraging the SHapley Additive exPlanations (SHAP) to elucidate the contributions of each gene from each omics to the model output. We believe WIMOAD is a very promising tool for accurate AD diagnosis and effective biomarker discovery across different progression stages, which eventually will have consequential impacts on early treatment intervention and personalized therapy design on AD.
Collapse
Affiliation(s)
- Hanyu Xiao
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE, United States, 68198
| | - Jieqiong Wang
- Department of Neurological Sciences, University of Nebraska Medical Center, Omaha, NE, United States, 68198
| | - Shibiao Wan
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE, United States, 68198
| |
Collapse
|
3
|
Gonzalez-Ortiz F, Kirsebom BE, Contador J, Tanley JE, Selnes P, Gísladóttir B, Pålhaugen L, Suhr Hemminghyth M, Jarholm J, Skogseth R, Bråthen G, Grøndtvedt G, Bjørnerud A, Tecelao S, Waterloo K, Aarsland D, Fernández-Lebrero A, García-Escobar G, Navalpotro-Gómez I, Turton M, Hesthamar A, Kac PR, Nilsson J, Luchsinger J, Hayden KM, Harrison P, Puig-Pijoan A, Zetterberg H, Hughes TM, Suárez-Calvet M, Karikari TK, Fladby T, Blennow K. Plasma brain-derived tau is an amyloid-associated neurodegeneration biomarker in Alzheimer's disease. Nat Commun 2024; 15:2908. [PMID: 38575616 PMCID: PMC10995141 DOI: 10.1038/s41467-024-47286-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 03/26/2024] [Indexed: 04/06/2024] Open
Abstract
Staging amyloid-beta (Aβ) pathophysiology according to the intensity of neurodegeneration could identify individuals at risk for cognitive decline in Alzheimer's disease (AD). In blood, phosphorylated tau (p-tau) associates with Aβ pathophysiology but an AD-type neurodegeneration biomarker has been lacking. In this multicenter study (n = 1076), we show that brain-derived tau (BD-tau) in blood increases according to concomitant Aβ ("A") and neurodegeneration ("N") abnormalities (determined using cerebrospinal fluid biomarkers); We used blood-based A/N biomarkers to profile the participants in this study; individuals with blood-based p-tau+/BD-tau+ profiles had the fastest cognitive decline and atrophy rates, irrespective of the baseline cognitive status. Furthermore, BD-tau showed no or much weaker correlations with age, renal function, other comorbidities/risk factors and self-identified race/ethnicity, compared with other blood biomarkers. Here we show that blood-based BD-tau is a biomarker for identifying Aβ-positive individuals at risk of short-term cognitive decline and atrophy, with implications for clinical trials and implementation of anti-Aβ therapies.
Collapse
Affiliation(s)
- Fernando Gonzalez-Ortiz
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden.
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden.
| | - Bjørn-Eivind Kirsebom
- Department of Neurology, University Hospital of North Norway, Tromsø, Norway
- Department of Psychology, Faculty of Health Sciences, The Arctic University of Norway, Tromsø, Norway
- Institute of Clinical Medicine, Campus Ahus, University of Oslo, Oslo, Norway
| | - José Contador
- Barcelonaβeta Brain Research Center (BBRC), Pasqual Maragall Foundation, Barcelona, Spain
- Hospital del Mar Research Institute, Barcelona, Spain
- Cognitive Decline and Movement Disorders Unit, Neurology Department, Hospital del Mar, Barcelona, Spain
| | - Jordan E Tanley
- Department of Internal Medicine, Section on Gerontology and Geriatric Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Per Selnes
- Department of Neurology, Akershus University Hospital, Lørenskog, Norway
| | | | - Lene Pålhaugen
- Department of Neurology, Akershus University Hospital, Lørenskog, Norway
| | - Mathilde Suhr Hemminghyth
- Research Group for Age-Related Medicine, Haugesund Hospital, Haugesund, Norway
- Department of Neuropsychology, Haugesund Hospital, Haugesund, Norway
- Department of Clinical Medicine (K1), University of Bergen, Bergen, Norway
| | - Jonas Jarholm
- Department of Neurology, Akershus University Hospital, Lørenskog, Norway
| | - Ragnhild Skogseth
- Department of Geriatric Medicine, Haraldsplass Deaconess Hospital, Bergen, Norway
- Department of Clinical Sciences, Faculty of Medicine, University of Bergen, Bergen, Norway
| | - Geir Bråthen
- Department of Neurology and Clinical Neurophysiology, University Hospital of Trondheim, Trondheim, Norway
- Department of Neuromedicine and Movement Science, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway
| | - Gøril Grøndtvedt
- Department of Neurology and Clinical Neurophysiology, University Hospital of Trondheim, Trondheim, Norway
- Department of Neuromedicine and Movement Science, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway
| | - Atle Bjørnerud
- Department of Physics, University of Oslo, Oslo, Norway
- Unit for Computational Radiology and Artificial Intelligence, Oslo University hospital, Oslo, Norway
- Department of Psychology, Faculty for Social Sciences, University of Oslo, Oslo, Norway
| | - Sandra Tecelao
- Department of Neurology, Akershus University Hospital, Lørenskog, Norway
| | - Knut Waterloo
- Department of Neurology, University Hospital of North Norway, Tromsø, Norway
- Department of Psychology, Faculty of Health Sciences, The Arctic University of Norway, Tromsø, Norway
| | - Dag Aarsland
- Department of Old Age Psychiatry. Institute of psychiatry, Psychology and Neuroscience King's College London, London, UK
- Centre for Age-Related Diseases, University Hospital Stavanger, Stavanger, Norway
| | - Aida Fernández-Lebrero
- Barcelonaβeta Brain Research Center (BBRC), Pasqual Maragall Foundation, Barcelona, Spain
- Hospital del Mar Research Institute, Barcelona, Spain
- Cognitive Decline and Movement Disorders Unit, Neurology Department, Hospital del Mar, Barcelona, Spain
- Department of Medicine and Life Sciences, Universitat Pompeu Fabra, Barcelona, 08003, Spain
- ERA-Net on Cardiovascular Diseases (ERA-CVD) consortium, Barcelona, Spain
| | - Greta García-Escobar
- Hospital del Mar Research Institute, Barcelona, Spain
- ERA-Net on Cardiovascular Diseases (ERA-CVD) consortium, Barcelona, Spain
| | - Irene Navalpotro-Gómez
- Barcelonaβeta Brain Research Center (BBRC), Pasqual Maragall Foundation, Barcelona, Spain
- Hospital del Mar Research Institute, Barcelona, Spain
- Cognitive Decline and Movement Disorders Unit, Neurology Department, Hospital del Mar, Barcelona, Spain
- ERA-Net on Cardiovascular Diseases (ERA-CVD) consortium, Barcelona, Spain
| | - Michael Turton
- Bioventix Plc, 7 Romans Business Park, East Street, Farnham, Surrey, GU9 7SX, UK
| | - Agnes Hesthamar
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
| | - Przemyslaw R Kac
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
| | - Johanna Nilsson
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
| | - Jose Luchsinger
- Department of Internal Medicine, Section on Gerontology and Geriatric Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Kathleen M Hayden
- Department of Internal Medicine, Section on Gerontology and Geriatric Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Peter Harrison
- Bioventix Plc, 7 Romans Business Park, East Street, Farnham, Surrey, GU9 7SX, UK
| | - Albert Puig-Pijoan
- Barcelonaβeta Brain Research Center (BBRC), Pasqual Maragall Foundation, Barcelona, Spain
- Hospital del Mar Research Institute, Barcelona, Spain
- ERA-Net on Cardiovascular Diseases (ERA-CVD) consortium, Barcelona, Spain
- Department of Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London, UK
- UK Dementia Research Institute at UCL, London, UK
- Hong Kong Center for Neurodegenerative Diseases, Clear Water Bay, Hong Kong, China
- Wisconsin Alzheimer's Disease Research Center, University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| | - Timothy M Hughes
- Department of Internal Medicine, Section on Gerontology and Geriatric Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Marc Suárez-Calvet
- Barcelonaβeta Brain Research Center (BBRC), Pasqual Maragall Foundation, Barcelona, Spain
- Hospital del Mar Research Institute, Barcelona, Spain
- Cognitive Decline and Movement Disorders Unit, Neurology Department, Hospital del Mar, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES), Madrid, Spain
| | - Thomas K Karikari
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Tormod Fladby
- Institute of Clinical Medicine, Campus Ahus, University of Oslo, Oslo, Norway
- Department of Neurology, Akershus University Hospital, Lørenskog, Norway
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| |
Collapse
|
4
|
Sánchez‐Soblechero A, Berbel A, Villarejo A, Palmí‐Cortés I, Vieira A, Gil‐Moreno MJ, Fernández C, Martín‐Montes Ã, Carreras MT, Fernández Y, Puertas C, Blanco‐Palmero V, Llamas S, González‐Sánchez M, Lapeña T, de Luis P, Manzano S, Olazarán J. Translating NIA-AA criteria into usual practice: Report from the ReDeMa Project. ALZHEIMER'S & DEMENTIA (NEW YORK, N. Y.) 2024; 10:e12451. [PMID: 38505833 PMCID: PMC10948948 DOI: 10.1002/trc2.12451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 12/23/2023] [Accepted: 12/30/2023] [Indexed: 03/21/2024]
Abstract
INTRODUCTION Biomarker-informed criteria were proposed for the diagnosis of Alzheimer's disease (AD) by the National Institute on Aging and the Alzheimer's Association (NIA-AA) in 2011; however, the adequacy of this criteria has not been sufficiently evaluated. METHODS ReDeMa (Red de Demencias de Madrid) is a regional cohort of patients attending memory and neurology clinics. Core cerebrospinal fluid biomarkers were obtained, NIA-AA diagnostic criteria were considered, and changes in diagnosis and management were evaluated. RESULTS A total of 233 patients were analyzed (mean age 70 years, 50% women, 73% AD). The diagnostic language was modified significantly, with a majority assumption of NIA-AA definitions (69%). Confidence in diagnosis increased from 70% to 92% (p < 0.0005) and management was changed in 71% of patient/caregivers. The influence of neurologist's age or expertise on study results was minimal. DISCUSSION The NIA-AA criteria are adequate and utile for usual practice in memory and neurology clinics, improving diagnostic confidence and significantly modifying patient management. HIGHLIGHTS Alzheimer's disease (AD) cerebrospinal fluid (CSF) biomarkers increase diagnostic certainty regardless of the neurologist.AD CSF biomarkers lead to changes in disease management .Biomarker-enriched, 2011 NIA-AA diagnostic criteria are adequate for usual practice.
Collapse
Affiliation(s)
| | | | | | - Itziar Palmí‐Cortés
- Neurology ServiceUniversity Hospital Infanta Sofía, San Sebastián de los ReyesMadridSpain
| | - Alba Vieira
- Neurology ServiceUniversity Hospital la PrincesaMadridSpain
| | | | | | - Ãngel Martín‐Montes
- Hospital La Paz Institute for Health Research – IdiPAZ (La Paz University Hospital – Universidad Autónoma de Madrid)MadridSpain
| | | | - Yolanda Fernández
- Memory Disorders Clinic ‐ HM Hospitals and Neurology Service ‐ University Hospital Gregorio MarañónMadridSpain
| | - Carolina Puertas
- Clinical Biochemistry ServiceUniversity Hospital Gregorio MarañónMadridSpain
| | | | - Sara Llamas
- Neurology ServiceUniversity Hospital 12 de OctubreMadridSpain
| | - Marta González‐Sánchez
- Neurology ServiceUniversity Hospital 12 de OctubreMadridSpain
- Group of Neurodegenerative DiseasesUniversity Hospital 12 de Octubre Research Institute (imas12), and Biomedical Research Networking Center in Neurodegenerative Diseases (CIBERNED)MadridSpain
| | | | | | | | - Javier Olazarán
- Memory Disorders Clinic ‐ HM HospitalsNeurology Service ‐ University Hospital Gregorio Marañón, and Maria Wolff FoundationMadridSpain
| |
Collapse
|
5
|
Hazan J, Wing M, Liu KY, Reeves S, Howard R. Clinical utility of cerebrospinal fluid biomarkers in the evaluation of cognitive impairment: a systematic review and meta-analysis. J Neurol Neurosurg Psychiatry 2023; 94:113-120. [PMID: 36096664 DOI: 10.1136/jnnp-2022-329530] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 08/29/2022] [Indexed: 01/14/2023]
Abstract
BACKGROUND The analytical and clinical validity of cerebrospinal (CSF) biomarkers has been extensively researched in dementia. Further work is needed to assess the ability of these biomarkers to improve diagnosis, management and health outcomes in the clinical setting OBJECTIVES: To assess the added value and clinical utility of CSF biomarkers in the diagnostic assessment of cognitively impaired patients under evaluation for Alzheimer's disease (AD). METHODS Systematic literature searches of Medline, EMBASE, PsycINFO and Web of Science research databases were conducted on 17 December 2022. Data from relevant studies were extracted and independently screened for quality using a tool for bias. Clinical utility was measured by clinicians' changes in diagnosis, diagnostic confidence and patient management (when available), after their examination of patients' CSF biomarkers. Cost-effectiveness was assessed by consideration of additional cost per patient and quality-adjusted life years. RESULTS Searches identified 17 studies comprising 2090 patient participants and 593 clinicians. The meta-analysis revealed that clinicians' use of CSF biomarkers resulted in a pooled percentage change in diagnosis of 25% (95% CI 14 to 37), an increase in diagnostic confidence of 14% (95% CI 9 to 18) and a pooled proportion of patients whose management changed of 31% (95% CI 12 to 50). CSF biomarkers were deemed cost-effective, particularly in memory services, where pre-test AD prevalence is higher compared with a primary care setting. CONCLUSIONS CSF biomarkers can be a helpful additional diagnostic tool for clinicians assessing patients with cognitive impairment. In particular, CSF biomarkers consistently improved clinicians' confidence in diagnosing AD and influenced on diagnostic change and patient management. Further research is needed to study the clinical utility of blood-based biomarkers in the clinical setting.
Collapse
Affiliation(s)
- Jemma Hazan
- Division of Psychiatry, University College London, London, UK
| | - Michelle Wing
- Division of Psychiatry, University College London, London, UK
| | - Kathy Y Liu
- Division of Psychiatry, University College London, London, UK
| | - Suzanne Reeves
- Division of Psychiatry, University College London, London, UK
| | - Robert Howard
- Division of Psychiatry, University College London, London, UK
| |
Collapse
|
6
|
Dulewicz M, Kulczyńska-Przybik A, Mroczko P, Kornhuber J, Lewczuk P, Mroczko B. Biomarkers for the Diagnosis of Alzheimer’s Disease in Clinical Practice: The Role of CSF Biomarkers during the Evolution of Diagnostic Criteria. Int J Mol Sci 2022; 23:ijms23158598. [PMID: 35955728 PMCID: PMC9369334 DOI: 10.3390/ijms23158598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 07/30/2022] [Accepted: 07/30/2022] [Indexed: 11/16/2022] Open
Abstract
Alzheimer’s disease (AD) is a progressive condition and the most common cause of dementia worldwide. The neuropathological changes characteristic of the disorder can be successfully detected before the development of full-blown AD. Early diagnosis of the disease constitutes a formidable challenge for clinicians. CSF biomarkers are the in vivo evidence of neuropathological changes developing in the brain of dementia patients. Therefore, measurement of their concentrations allows for improved accuracy of clinical diagnosis. Moreover, AD biomarkers may provide an indication of disease stage. Importantly, the CSF biomarkers of AD play a pivotal role in the new diagnostic criteria for the disease, and in the recent biological definition of AD by the National Institute on Aging, NIH and Alzheimer’s Association. Due to the necessity of collecting CSF by lumbar puncture, the procedure seems to be an important issue not only from a medical, but also a legal, viewpoint. Furthermore, recent technological advances may contribute to the automation of AD biomarkers measurement and may result in the establishment of unified cut-off values and reference limits. Moreover, a group of international experts in the field of AD biomarkers have developed a consensus and guidelines on the interpretation of CSF biomarkers in the context of AD diagnosis. Thus, technological advancement and expert recommendations may contribute to a more widespread use of these diagnostic tests in clinical practice to support a diagnosis of mild cognitive impairment (MCI) or dementia due to AD. This review article presents up-to-date data regarding the usefulness of CSF biomarkers in routine clinical practice and in biomarkers research.
Collapse
Affiliation(s)
- Maciej Dulewicz
- Department of Neurodegeneration Diagnostics, Medical University of Bialystok, 15-269 Bialystok, Poland; (A.K.-P.); (P.L.); (B.M.)
- Correspondence:
| | - Agnieszka Kulczyńska-Przybik
- Department of Neurodegeneration Diagnostics, Medical University of Bialystok, 15-269 Bialystok, Poland; (A.K.-P.); (P.L.); (B.M.)
| | - Piotr Mroczko
- Department of Criminal Law and Criminology, Faculty of Law, University of Bialystok, 15-213 Bialystok, Poland;
| | - Johannes Kornhuber
- Department of Psychiatry and Psychotherapy, Universitätsklinikum Erlangen and Friedrich-Alexander Universität Erlangen-Nürnberg, 91054 Erlangen, Germany;
| | - Piotr Lewczuk
- Department of Neurodegeneration Diagnostics, Medical University of Bialystok, 15-269 Bialystok, Poland; (A.K.-P.); (P.L.); (B.M.)
- Department of Psychiatry and Psychotherapy, Universitätsklinikum Erlangen and Friedrich-Alexander Universität Erlangen-Nürnberg, 91054 Erlangen, Germany;
| | - Barbara Mroczko
- Department of Neurodegeneration Diagnostics, Medical University of Bialystok, 15-269 Bialystok, Poland; (A.K.-P.); (P.L.); (B.M.)
- Department of Biochemical Diagnostics, Medical University of Bialystok, 15-269 Bialystok, Poland
| |
Collapse
|
7
|
Malkov A, Popova I, Ivanov A, Jang SS, Yoon SY, Osypov A, Huang Y, Zilberter Y, Zilberter M. Aβ initiates brain hypometabolism, network dysfunction and behavioral abnormalities via NOX2-induced oxidative stress in mice. Commun Biol 2021; 4:1054. [PMID: 34504272 PMCID: PMC8429759 DOI: 10.1038/s42003-021-02551-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 08/12/2021] [Indexed: 12/30/2022] Open
Abstract
A predominant trigger and driver of sporadic Alzheimer’s disease (AD) is the synergy of brain oxidative stress and glucose hypometabolism starting at early preclinical stages. Oxidative stress damages macromolecules, while glucose hypometabolism impairs cellular energy supply and antioxidant defense. However, the exact cause of AD-associated glucose hypometabolism and its network consequences have remained unknown. Here we report NADPH oxidase 2 (NOX2) activation as the main initiating mechanism behind Aβ1-42-related glucose hypometabolism and network dysfunction. We utilize a combination of electrophysiology with real-time recordings of metabolic transients both ex- and in-vivo to show that Aβ1-42 induces oxidative stress and acutely reduces cellular glucose consumption followed by long-lasting network hyperactivity and abnormalities in the animal behavioral profile. Critically, all of these pathological changes were prevented by the novel bioavailable NOX2 antagonist GSK2795039. Our data provide direct experimental evidence for causes and consequences of AD-related brain glucose hypometabolism, and suggest that targeting NOX2-mediated oxidative stress is a promising approach to both the prevention and treatment of AD. Anton Malkov, Irina Popova et al. demonstrate that beta-amyloid application induces oxidative stress and reduces glucose consumption in the mouse brain, leading to network hyperactivity and behavioral changes—pathologies similar to those observed early on in Alzheimer’s disease patients. Inhibition of NADPH oxidase 2 (NOX2) rescued these phenotypes, suggesting that NOX2 may represent an important therapeutic target for Alzheimer’s disease.
Collapse
Affiliation(s)
- Anton Malkov
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, Russia
| | - Irina Popova
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, Russia
| | - Anton Ivanov
- Aix Marseille Université, Inserm, Marseille, France
| | - Sung-Soo Jang
- Gladstone Institute of Neurological Disease, San Francisco, CA, USA
| | - Seo Yeon Yoon
- Gladstone Institute of Neurological Disease, San Francisco, CA, USA
| | - Alexander Osypov
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, Russia.,Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, Moscow, Russia
| | - Yadong Huang
- Gladstone Institute of Neurological Disease, San Francisco, CA, USA.,Department of Neurology, University of California, San Francisco, CA, USA
| | | | - Misha Zilberter
- Gladstone Institute of Neurological Disease, San Francisco, CA, USA.
| |
Collapse
|