1
|
Bhattarai S, Sugita BM, Nunes-Souza E, Fonseca AS, Chandrashekar DS, Bhargava M, Cavalli LR, Aneja R. Dysregulated miRNA Expression and Androgen Receptor Loss in Racially Distinct Triple-Negative Breast Cancer. Int J Mol Sci 2024; 25:13679. [PMID: 39769441 PMCID: PMC11679545 DOI: 10.3390/ijms252413679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 11/23/2024] [Accepted: 12/11/2024] [Indexed: 01/11/2025] Open
Abstract
Androgen receptor (AR)-negative triple-negative breast cancer (TNBC), often termed quadruple-negative breast cancer (QNBC), disproportionately impacts women of African descent, leading to poorer overall survival (OS). MiRNAs regulate the expression of gene drivers involved in critical signaling pathways in TNBC, such as the AR gene, and their expression varies across races and breast cancer subtypes. This study investigates whether differentially expressed miRNAs influence AR transcription, potentially contributing to the observed disparities between African American (AA) and European American (EA) QNBC patients. Race-annotated TNBC samples (n = 129) were analyzed for AR expression status and revealed the prevalence of QNBC in AA patients compared to EA (76.6% vs. 57.7%) and a significant association of AR loss with poor survival among AAs. The Cancer Genome Atlas (TCGA) RNA-seq data showed that AAs with TNBC (n = 32) had lower AR mRNA levels than EAs (n = 67). Among TCGA patients in the AR-low group, AAs had significantly poorer OS than EAs. In our cohort, 46 miRNAs exhibited differential expression between AAs and EAs with QNBC. Ten of these miRNAs (miR-1185-5p, miR-1305, miR-3161, miR-3690, miR-494-3p, miR-509-3-5p, miR-619-3p, miR-628-3p, miR-873-5p, and miR-877-5p) were predicted to target the AR gene/signaling. The loss of AR expression is linked to poorer prognoses in AA women. The understanding of the specific miRNAs involved and their regulatory mechanisms on AR expression could provide valuable insights into why AA women are more prone to QNBC.
Collapse
Affiliation(s)
- Shristi Bhattarai
- Department of Molecular and Cellular Biology, Kennesaw State University, Kennesaw, GA 30144, USA
- Department of Biology, Georgia State University, Atlanta, GA 30302, USA
| | - Bruna M. Sugita
- Research Institute Pelé Pequeno Príncipe, Faculdades Pequeno Príncipe, Curitiba 80250-060, PR, Brazil; (B.M.S.)
| | - Emanuelle Nunes-Souza
- Research Institute Pelé Pequeno Príncipe, Faculdades Pequeno Príncipe, Curitiba 80250-060, PR, Brazil; (B.M.S.)
| | - Aline S. Fonseca
- Research Institute Pelé Pequeno Príncipe, Faculdades Pequeno Príncipe, Curitiba 80250-060, PR, Brazil; (B.M.S.)
| | - Darshan Shimoga Chandrashekar
- Molecular and Cellular Pathology, Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35233, USA;
| | - Mahak Bhargava
- Department of Nutrition Sciences, School of Health Professions, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Luciane R. Cavalli
- Research Institute Pelé Pequeno Príncipe, Faculdades Pequeno Príncipe, Curitiba 80250-060, PR, Brazil; (B.M.S.)
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC 20007, USA
| | - Ritu Aneja
- Department of Biology, Georgia State University, Atlanta, GA 30302, USA
- Department of Nutrition Sciences, School of Health Professions, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| |
Collapse
|
2
|
Wang R, Wu M, Zhang X, Jiang T, Wei Z. Methylation of microRNA genes and its effect on secondary xylem development of stem in poplar. THE PLANT GENOME 2024; 17:e20446. [PMID: 38528365 DOI: 10.1002/tpg2.20446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 02/21/2024] [Accepted: 02/27/2024] [Indexed: 03/27/2024]
Abstract
MicroRNAs (miRNAs) and DNA methylation are both vital regulators of gene expression. DNA methylation can affect the transcription of miRNAs, just like coding genes, through methylating the CpG islands in the gene regions of miRNAs. Although previous studies have shown that DNA methylation and miRNAs can each be involved in the process of wood formation, the relationship between the two has been relatively little studied in plant wood formation. Studies have shown that the second internode (IN2) (from top to bottom) of 3-month-old poplar trees can represent the primary stage of poplar stem development and IN8 can represent the secondary stage. There were also significant differences in DNA methylation patterns and miRNA expression patterns obtained from PS and SS. In this study, we first interactively analyzed methylation and miRNA sequencing data to identify 43 differentially expressed miRNAs regulated by differential methylation from the primary stage and secondary stage, which were found to be involved in multiple biological processes related to wood formation by enrichment analysis. In addition, six miRNA/target gene modules were finally identified as potentially involved in secondary xylem development of poplar stems through degradome sequencing and functional analysis. In conclusion, this study provides important reference information on the mechanism of interaction between different regulatory pathways of wood formation.
Collapse
Affiliation(s)
- Ruiqi Wang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
| | - Meixuan Wu
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
| | - Xiao Zhang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
| | - Tingbo Jiang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
| | - Zhigang Wei
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education, Heilongjiang University, Harbin, China
| |
Collapse
|
3
|
Johnson JA, Moore BJ, Syrnioti G, Eden CM, Wright D, Newman LA. Landmark Series: The Cancer Genome Atlas and the Study of Breast Cancer Disparities. Ann Surg Oncol 2023; 30:6427-6440. [PMID: 37587359 DOI: 10.1245/s10434-023-13866-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 06/24/2023] [Indexed: 08/18/2023]
Abstract
Race-related variation in breast cancer incidence and mortality are well-documented in the United States. The effect of genetic ancestry on disparities in tumor genomics, risk factors, treatment, and outcomes of breast cancer is less understood. The Cancer Genome Atlas (TCGA) is a publicly available resource that has allowed for the recent emergence of genome analysis research seeking to characterize tumor DNA and protein expression by ancestry as well as the social construction of race and ethnicity. Results from TCGA based studies support previous clinical evidence that demonstrates that American women with African ancestry are more likely to be afflicted with breast cancers featuring aggressive biology and poorer outcomes compared with women with other backgrounds. Data from TCGA based studies suggest that Asian women have tumors with favorable immune microenvironments and may experience better disease-free survival compared with white Americans. TCGA contains limited data on Hispanic/Latinx patients due to small sample size. Overall, TCGA provides important opportunities to define the molecular, biologic, and germline genetic factors that contribute to breast cancer disparities.
Collapse
Affiliation(s)
- Josh A Johnson
- Department of Surgery, New York Presbyterian, Weill Cornell Medicine, New York, NY, USA
| | | | - Georgia Syrnioti
- Department of Surgery, New York Presbyterian, Weill Cornell Medicine, New York, NY, USA
| | - Claire M Eden
- Department of Surgery, New York Presbyterian Queens, Weill Cornell Medicine, Flushing, NY, USA
| | - Drew Wright
- Samuel J. Wood Library, Weill Cornell Medicine, New York, NY, USA
| | - Lisa A Newman
- Department of Surgery, New York Presbyterian, Weill Cornell Medicine, New York, NY, USA.
| |
Collapse
|
4
|
Almohaywi M, Sugita BM, Centa A, Fonseca AS, Antunes VC, Fadda P, Mannion CM, Abijo T, Goldberg SL, Campbell MC, Copeland RL, Kanaan Y, Cavalli LR. Deregulated miRNA Expression in Triple-Negative Breast Cancer of Ancestral Genomic-Characterized Latina Patients. Int J Mol Sci 2023; 24:13046. [PMID: 37685851 PMCID: PMC10487916 DOI: 10.3390/ijms241713046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/03/2023] [Accepted: 08/05/2023] [Indexed: 09/10/2023] Open
Abstract
Among patients with triple-negative breast cancer (TNBC), several studies have suggested that deregulated microRNA (miRNA) expression may be associated with a more aggressive phenotype. Although tumor molecular signatures may be race- and/or ethnicity-specific, there is limited information on the molecular profiles in women with TNBC of Hispanic and Latin American ancestry. We simultaneously profiled TNBC biopsies for the genome-wide copy number and miRNA global expression from 28 Latina women and identified a panel of 28 miRNAs associated with copy number alterations (CNAs). Four selected miRNAs (miR-141-3p, miR-150-5p, miR-182-5p, and miR-661) were validated in a subset of tumor and adjacent non-tumor tissue samples, with miR-182-5p being the most discriminatory among tissue groups (AUC value > 0.8). MiR-141-3p up-regulation was associated with increased cancer recurrence; miR-661 down-regulation with larger tumor size; and down-regulation of miR-150-5p with larger tumor size, high p53 expression, increased cancer recurrence, presence of distant metastasis, and deceased status. This study reinforces the importance of integration analysis of CNAs and miRNAs in TNBC, allowing for the identification of interactions among molecular mechanisms. Additionally, this study emphasizes the significance of considering the patients ancestral background when examining TNBC, as it can influence the relationship between intrinsic tumor molecular characteristics and clinical manifestations of the disease.
Collapse
Affiliation(s)
- Maram Almohaywi
- Microbiology Department, Howard University Cancer Center, Howard University, Washington, DC 20059, USA
| | - Bruna M. Sugita
- Research Institute Pelé Pequeno Príncipe, Faculdades Pequeno Príncipe, Curitiba 80250-060, PR, Brazil
| | - Ariana Centa
- Research Institute Pelé Pequeno Príncipe, Faculdades Pequeno Príncipe, Curitiba 80250-060, PR, Brazil
| | - Aline S. Fonseca
- Research Institute Pelé Pequeno Príncipe, Faculdades Pequeno Príncipe, Curitiba 80250-060, PR, Brazil
| | - Valquiria C. Antunes
- Research Institute Pelé Pequeno Príncipe, Faculdades Pequeno Príncipe, Curitiba 80250-060, PR, Brazil
| | - Paolo Fadda
- Genomics Shared Resource, Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA
| | - Ciaran M. Mannion
- Department of Pathology, Hackensack University Medical Center, Hackensack, NJ 07701, USA
| | - Tomilowo Abijo
- National Institute of Diabetes and Kidney Diseases, National Institute of Health, Bethesda, MD 20814, USA
| | - Stuart L. Goldberg
- John Theurer Cancer Center, Hackensack Meridian School of Medicine, Hackensack, NJ 07701, USA
- COTA, Inc., New York, NY 10014, USA
| | - Michael C. Campbell
- Department of Biological Sciences Human and Evolutionary Biology Section, University of Southern California, Los Angeles, CA 90089, USA
| | - Robert L. Copeland
- Pharmacology Department, Howard University Cancer Center, Howard University, Washington, DC 20059, USA
| | - Yasmine Kanaan
- Microbiology Department, Howard University Cancer Center, Howard University, Washington, DC 20059, USA
| | - Luciane R. Cavalli
- Research Institute Pelé Pequeno Príncipe, Faculdades Pequeno Príncipe, Curitiba 80250-060, PR, Brazil
- Oncology Department, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC 20007, USA
| |
Collapse
|
5
|
Chen J, Higgins MJ, Hu Q, Khoury T, Liu S, Ambrosone CB, Gong Z. DNA methylation differences in noncoding regions in ER negative breast tumors between Black and White women. Front Oncol 2023; 13:1167815. [PMID: 37293596 PMCID: PMC10244512 DOI: 10.3389/fonc.2023.1167815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 05/09/2023] [Indexed: 06/10/2023] Open
Abstract
Introduction Incidence of estrogen receptor (ER)-negative breast cancer, an aggressive tumor subtype associated with worse prognosis, is higher among African American/Black women than other US racial and ethnic groups. The reasons for this disparity remain poorly understood but may be partially explained by differences in the epigenetic landscape. Methods We previously conducted genome-wide DNA methylation profiling of ER- breast tumors from Black and White women and identified a large number of differentially methylated loci (DML) by race. Our initial analysis focused on DML mapping to protein-coding genes. In this study, motivated by increasing appreciation for the biological importance of the non-protein coding genome, we focused on 96 DMLs mapping to intergenic and noncoding RNA regions, using paired Illumina Infinium Human Methylation 450K array and RNA-seq data to assess the relationship between CpG methylation and RNA expression of genes located up to 1Mb away from the CpG site. Results Twenty-three (23) DMLs were significantly correlated with the expression of 36 genes (FDR<0.05), with some DMLs associated with the expression of single gene and others associated with more than one gene. One DML (cg20401567), hypermethylated in ER- tumors from Black versus White women, mapped to a putative enhancer/super-enhancer element located 1.3 Kb downstream of HOXB2. Increased methylation at this CpG correlated with decreased expression of HOXB2 (Rho=-0.74, FDR<0.001) and other HOXB/HOXB-AS genes. Analysis of an independent set of 207 ER- breast cancers from TCGA similarly confirmed hypermethylation at cg20401567 and reduced HOXB2 expression in tumors from Black versus White women (Rho=-0.75, FDR<0.001). Discussion Our findings indicate that epigenetic differences in ER- tumors between Black and White women are linked to altered gene expression and may hold functional significance in breast cancer pathogenesis.
Collapse
Affiliation(s)
- Jianhong Chen
- Department of Cancer Prevention and Control, Roswell Park Comprehensive Cancer Center, Buffalo, NY, United States
| | - Michael J. Higgins
- Department of Molecular and Cellular Biology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, United States
| | - Qiang Hu
- Department of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, United States
| | - Thaer Khoury
- Department of Pathology & Laboratory Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, NY, United States
| | - Song Liu
- Department of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, United States
| | - Christine B. Ambrosone
- Department of Cancer Prevention and Control, Roswell Park Comprehensive Cancer Center, Buffalo, NY, United States
| | - Zhihong Gong
- Department of Cancer Prevention and Control, Roswell Park Comprehensive Cancer Center, Buffalo, NY, United States
| |
Collapse
|
6
|
Unlu Yazici M, Marron JS, Bakir-Gungor B, Zou F, Yousef M. Invention of 3Mint for feature grouping and scoring in multi-omics. Front Genet 2023; 14:1093326. [PMID: 37007972 PMCID: PMC10050723 DOI: 10.3389/fgene.2023.1093326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 02/27/2023] [Indexed: 03/17/2023] Open
Abstract
Advanced genomic and molecular profiling technologies accelerated the enlightenment of the regulatory mechanisms behind cancer development and progression, and the targeted therapies in patients. Along this line, intense studies with immense amounts of biological information have boosted the discovery of molecular biomarkers. Cancer is one of the leading causes of death around the world in recent years. Elucidation of genomic and epigenetic factors in Breast Cancer (BRCA) can provide a roadmap to uncover the disease mechanisms. Accordingly, unraveling the possible systematic connections between-omics data types and their contribution to BRCA tumor progression is crucial. In this study, we have developed a novel machine learning (ML) based integrative approach for multi-omics data analysis. This integrative approach combines information from gene expression (mRNA), microRNA (miRNA) and methylation data. Due to the complexity of cancer, this integrated data is expected to improve the prediction, diagnosis and treatment of disease through patterns only available from the 3-way interactions between these 3-omics datasets. In addition, the proposed method bridges the interpretation gap between the disease mechanisms that drive onset and progression. Our fundamental contribution is the 3 Multi-omics integrative tool (3Mint). This tool aims to perform grouping and scoring of groups using biological knowledge. Another major goal is improved gene selection via detection of novel groups of cross-omics biomarkers. Performance of 3Mint is assessed using different metrics. Our computational performance evaluations showed that the 3Mint classifies the BRCA molecular subtypes with lower number of genes when compared to the miRcorrNet tool which uses miRNA and mRNA gene expression profiles in terms of similar performance metrics (95% Accuracy). The incorporation of methylation data in 3Mint yields a much more focused analysis. The 3Mint tool and all other supplementary files are available at https://github.com/malikyousef/3Mint/.
Collapse
Affiliation(s)
- Miray Unlu Yazici
- Department of Bioengineering, Abdullah Gül University, Kayseri, Türkiye
| | - J. S. Marron
- Department of Statistics and Operations Research, University of North Carolina, Chapel Hill, NC, United States
| | - Burcu Bakir-Gungor
- Department of Bioengineering, Abdullah Gül University, Kayseri, Türkiye
- Department of Computer Engineering, Abdullah Gul University, Kayseri, Türkiye
| | - Fei Zou
- Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Malik Yousef
- Department of Information Systems, Zefat Academic College, Zefat, Israel
- Galilee Digital Health Research Center, Zefat Academic College, Zefat, Israel
- *Correspondence: Malik Yousef,
| |
Collapse
|
7
|
Hajibabaei S, Sotoodehnejadnematalahi F, Nafissi N, Zeinali S, Azizi M. Aberrant promoter hypermethylation of miR-335 and miR-145 is involved in breast cancer PD-L1 overexpression. Sci Rep 2023; 13:1003. [PMID: 36653507 PMCID: PMC9849328 DOI: 10.1038/s41598-023-27415-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Accepted: 01/02/2023] [Indexed: 01/19/2023] Open
Abstract
PD-L1 is one of the most important immune checkpoint molecules in breast cancer that plays an important role in suppressing the immune system when confronted with tumor cells and is regulated by various microRNAs. Among them, microRNA-335-3p and microRNA-145-5p, regulated by DNA methylation, have tumor suppressor activities. We studied the role of miR-335 and -145 on PD-L1 suppression in breast cancer. The expression of miR-355 and miR-145 was significantly downregulated in BC tissues and cell lines compared to their controls, and their downregulation was negatively correlated with PD-L1 overexpression. In-silico and luciferase reporter systems confirmed that miR-335 and -145 target PD-L1. In BC tissues and cell lines, cancer-specific methylation was found in CpG-rich areas upstream of miR-335 and-145, and up-regulation of PD-L1 expression was connected with hypermethylation (r = 0.4089, P = 0.0147, and r = 0.3373, P = 0.0475, respectively). The higher levels of miR-355 and -145 in BC cells induced apoptosis, arrested the cell cycle, and reduced proliferation significantly. In summary, we found that miR-335 and -145 are novel tumor suppressors inactivated in BC, and these miRs may serve as potential therapeutic targets for breast cancer treatment.
Collapse
Affiliation(s)
- Sara Hajibabaei
- Department of Biology, School of Basic Science, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | | | - Nahid Nafissi
- Breast Surgery Department, Iran University of Medical Sciences, Tehran, Iran
| | - Sirous Zeinali
- Molecular Medicine Department, Biotechnology Research Center, Pasteur Institute of Iran, 69th Pasteur Street, Kargar Avenue, Tehran, Iran
| | - Masoumeh Azizi
- Molecular Medicine Department, Biotechnology Research Center, Pasteur Institute of Iran, 69th Pasteur Street, Kargar Avenue, Tehran, Iran.
| |
Collapse
|
8
|
Crosstalk between Methylation and ncRNAs in Breast Cancer: Therapeutic and Diagnostic Implications. Int J Mol Sci 2022; 23:ijms232415759. [PMID: 36555400 PMCID: PMC9779155 DOI: 10.3390/ijms232415759] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 12/05/2022] [Accepted: 12/08/2022] [Indexed: 12/14/2022] Open
Abstract
Breast cancer, as a highly heterogeneous malignant tumor, is one of the primary causes of death among females worldwide. The etiology of breast cancer involves aberrant epigenetic mechanisms and abnormal expression of certain non-coding RNA (ncRNAs). DNA methylation, N6-methyladenosine(m6A), and histone methylation are widely explored epigenetic regulation types in breast cancer. ncRNAs are a group of unique RNA transcripts, mainly including microRNA (miRNAs), long non-coding RNA (lncRNAs), circular RNA (circRNAs), small interfering RNA (siRNAs), piwi-interacting RNA (piRNAs), etc. Different types of methylation and ncRNAs mutually regulate and interact to form intricate networks to mediate precisely breast cancer genesis. In this review, we elaborate on the crosstalk between major methylation modifications and ncRNAs and discuss the role of their interaction in promoting breast cancer oncogenesis. This review can provide novel insights into establishing a new diagnostic marker system on methylation patterns of ncRNAs and therapeutic perspectives of combining ncRNA oligonucleotides and phytochemical drugs for breast cancer therapy.
Collapse
|