1
|
Corradi C, Gentiluomo M, Adsay V, Sainz J, Camisa PR, Wlodarczyk B, Crippa S, Tavano F, Capurso G, Campa D. Multi-omic markers of intraductal papillary mucinous neoplasms progression into pancreatic cancer. Semin Cancer Biol 2025; 109:25-43. [PMID: 39733817 DOI: 10.1016/j.semcancer.2024.12.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 12/19/2024] [Accepted: 12/23/2024] [Indexed: 12/31/2024]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is the most lethal and common form of pancreatic cancer, it has no specific symptoms, and most of the patients are diagnosed when the disease is already at an advanced stage. Chemotherapy typically has only a modest effect, making surgery the most effective treatment option. However, only a small percentage of patients are amenable to surgery. One viable strategy to reduce PDAC death burden associated with the disease is to focus on precursor lesions and identify markers able to predict who will evolve into PDAC. While most PDACs are believed to be preceded by pancreatic intraepithelial neoplasms (PanINs), 5-10 % arise from Intraductal papillary mucinous neoplasms (IPMNs), which are mass-forming cystic lesions that are very common in the general population. IPMNs offer an invaluable model of pancreatic carcinogenesis for researchers to analyse, as well as a target population for PDAC early detection by clinicians. The evolution of IPMN into cancer is a complex and multistep process, therefore the identification of individual markers will not be the solution. In recent years, multiple omics technologies have been instrumental to identify possible biomarkers of IPMN progression and carcinogenesis. The only foreseeable strategy will be to integrate multi-omics data, alongside clinical and morphological features, into a progression score or signature using either standard epidemiologic tools or artificial intelligence. The aim of this manuscript is to review the current knowledge on genetic biomarkers and to briefly mention also additional omics, such as metabolomics, the exposome, the miRNome and epigenomics of IPMNs.
Collapse
Affiliation(s)
| | | | - Volkan Adsay
- Department of Pathology, Koç University School of Medicine and Koç University Research Center for Translational Medicine, Istanbul, Turkey
| | - Juan Sainz
- Department of Biochemistry and Molecular Biology, University of Granada, Granada, Spain
| | - Paolo Riccardo Camisa
- Division of Pancreatic Surgery and Transplantation, Pancreas Translational and Clinical Research Center, IRCCS San Raffaele Scientific Institute, Milan, Italy; Vita-Salute San Raffaele University, Milan, Italy
| | - Barbara Wlodarczyk
- Department of Digestive Tract Diseases, Medical University of Lodz, Lodz, Poland
| | - Stefano Crippa
- Division of Pancreatic Surgery and Transplantation, Pancreas Translational and Clinical Research Center, IRCCS San Raffaele Scientific Institute, Milan, Italy; Vita-Salute San Raffaele University, Milan, Italy
| | - Francesca Tavano
- Division of Gastroenterology and Research Laboratory, Fondazione IRCCS "Casa Sollievo della Sofferenza" Hospital, San Giovanni Rotondo, Italy
| | - Gabriele Capurso
- Vita-Salute San Raffaele University, Milan, Italy; Pancreato-Biliary Endoscopy and Endosonography Division, Pancreas Translational and Clinical Research Center, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Daniele Campa
- Department of Biology, University of Pisa, Pisa, Italy.
| |
Collapse
|
2
|
Abulsoud AI, Elshaer SS, Abdelmaksoud NM, Zaki MB, El-Mahdy HA, Ismail A, Al-Noshokaty TM, Fathi D, Abdel-Reheim MA, Mohammed OA, Doghish AS. Investigating the regulatory role of miRNAs as silent conductors in the management of pathogenesis and therapeutic resistance of pancreatic cancer. Pathol Res Pract 2023; 251:154855. [PMID: 37806169 DOI: 10.1016/j.prp.2023.154855] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 09/16/2023] [Accepted: 10/02/2023] [Indexed: 10/10/2023]
Abstract
Pancreatic cancer (PC) has the greatest mortality rate of all the main malignancies. Its advanced stage and poor prognosis place it at the bottom of all cancer sites. Hence, emerging biomarkers can enable precision medicine where PC therapy is tailored to each patient. This highlights the need for new, highly sensitive and specific biomarkers for early PC diagnosis. Prognostic indicators are also required to stratify PC patients. To avoid ineffective treatment, adverse events, and expenses, biomarkers are also required for patient monitoring and identifying responders to treatment. There is substantial evidence that microRNAs (miRs, miRNAs) play a critical role in regulating mRNA and, as a consequence, protein expression in normal and malignant tissues. Deregulated miRNA profiling in PC can help with diagnosis, treatment planning, and prognosis. Furthermore, knowledge of the primary effector genes and downstream pathways in PC can help pinpoint potential miRNAs for use in treatment. Different miRNA expression profiles may serve as diagnostic, prognostic markers, and therapeutic targets across the spectrum of malignant pancreatic illness. Dysregulation of miRNAs has been linked to the malignant pathophysiology of PC through affecting many cellular functions such as increasing invasive and proliferative prospect, supporting angiogenesis, cell cycle aberrance, apoptosis elusion, metastasis promotion, and low sensitivity to particular treatments. Accordingly, in the current review, we summarize the recent advances in the roles of oncogenic and tumor suppressor (TS) miRNAs in PC and discuss their potential as worthy diagnostic and prognostic biomarkers for PC, as well as their significance in PC pathogenesis and anticancer drug resistance.
Collapse
Affiliation(s)
- Ahmed I Abulsoud
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, 11231 Cairo, Egypt; Department of Biochemistry and Biotechnology, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt
| | - Shereen Saeid Elshaer
- Department of Biochemistry and Biotechnology, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt; Department of Biochemistry, Faculty of Pharmacy (Girls), Al-Azhar University, Nasr city, Cairo 11823, Egypt
| | - Nourhan M Abdelmaksoud
- Department of Biochemistry and Biotechnology, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt
| | - Mohamed Bakr Zaki
- Department of Biochemistry, Faculty of Pharmacy, University of Sadat City, Menoufia 32897, Egypt
| | - Hesham A El-Mahdy
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, 11231 Cairo, Egypt.
| | - Ahmed Ismail
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, 11231 Cairo, Egypt
| | - Tohada M Al-Noshokaty
- Department of Biochemistry and Biotechnology, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt
| | - Doaa Fathi
- Department of Biochemistry and Biotechnology, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt
| | - Mustafa Ahmed Abdel-Reheim
- Department of Pharmaceutical Sciences, College of Pharmacy, Shaqra University, Shaqra 11961, Saudi Arabia; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni Suef 62521, Egypt.
| | - Osama A Mohammed
- Department of Clinical Pharmacology, College of Medicine, University of Bisha, Bisha 61922, Saudi Arabia
| | - Ahmed S Doghish
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt; Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, 11231 Cairo, Egypt.
| |
Collapse
|
3
|
Chmielewska N, Wawer A, Wicik Z, Osuch B, Maciejak P, Szyndler J. miR-9a-5p expression is decreased in the hippocampus of rats resistant to lamotrigine: A behavioural, molecular and bioinformatics assessment. Neuropharmacology 2023; 227:109425. [PMID: 36709037 DOI: 10.1016/j.neuropharm.2023.109425] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 01/05/2023] [Accepted: 01/16/2023] [Indexed: 01/27/2023]
Abstract
The major obstacle in developing new treatment strategies for refractory epilepsy is the complexity and poor understanding of its mechanisms. Utilizing the model of lamotrigine-resistant seizures, we evaluated whether changes in the expression of sodium channel subunits are responsible for the diminished responsiveness to lamotrigine (LTG) and if miRNAs, may also be associated. Male rats were administered LTG (5 mg/kg) before each stimulation during kindling acquisition. Challenge stimulation following LTG exposure (30 mg/kg) was performed to confirm resistance in fully kindled rats. RT-PCR was used to measure the mRNA levels of sodium channel subunits (SCN1A, SCN2A, and SCN3A) and miRNAs (miR-155-5p, miR-30b-5p, miR-137-3p, miR-342-5p, miR-301a-3p, miR-212-3p, miR-9a-5p, and miR-133a-3p). Western blot analysis was utilized to measure Nav1.2 protein, and bioinformatics tools were used to perform target prediction and enrichment analysis for miR-9a-5p, the only affected miRNA according to the responsiveness to LTG. Amygdala kindling seizures downregulated Nav1.2, miR-137-3p, miR-342-5p, miR-155-5p, and miR-9a-5p as well as upregulated miR-212-3p. miR-9a-5p was the only molecule decreased in rats resistant to LTG. The bioinformatic assessment and disease enrichment analysis revealed that miR-9a-5p targets expressed with high confidence in the hippocampus are the most significantly associated with epilepsy. Due to the miR-9a-5p dysregulation, major pathways affected are neurotrophic processes, neurotransmission, inflammatory response, cell proliferation and apoptosis. Interaction network analysis identified LTG target SCN2A as interacting with highest number of genes regulated by miR-9-5p. Further studies are needed to propose specific genes and miRNAs responsible for diminished responsiveness to LTG. miR-9a-5p targets, like KCNA4, KCNA2, CACNB2, SCN4B, KCNC1, should receive special attention in them.
Collapse
Affiliation(s)
- Natalia Chmielewska
- Department of Neurochemistry, Institute of Psychiatry and Neurology, Sobieskiego 9 Street, 02-957, Warsaw, Poland.
| | - Adriana Wawer
- Department of Experimental and Clinical Pharmacology, Centre for Preclinical Research and Technology CePT, Medical University of Warsaw, Banacha 1B Street, 02-097, Warsaw, Poland
| | - Zofia Wicik
- Department of Experimental and Clinical Pharmacology, Centre for Preclinical Research and Technology CePT, Medical University of Warsaw, Banacha 1B Street, 02-097, Warsaw, Poland
| | - Bartosz Osuch
- Department of Neurochemistry, Institute of Psychiatry and Neurology, Sobieskiego 9 Street, 02-957, Warsaw, Poland
| | - Piotr Maciejak
- Department of Neurochemistry, Institute of Psychiatry and Neurology, Sobieskiego 9 Street, 02-957, Warsaw, Poland
| | - Janusz Szyndler
- Department of Experimental and Clinical Pharmacology, Centre for Preclinical Research and Technology CePT, Medical University of Warsaw, Banacha 1B Street, 02-097, Warsaw, Poland
| |
Collapse
|
4
|
Zhang Q, Wang C, Li S, Li Y, Chen M, Hu Y. Screening of core genes prognostic for sepsis and construction of a ceRNA regulatory network. BMC Med Genomics 2023; 16:37. [PMID: 36855106 PMCID: PMC9976425 DOI: 10.1186/s12920-023-01460-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Accepted: 02/13/2023] [Indexed: 03/02/2023] Open
Abstract
OBJECTIVE To screen out core genes potentially prognostic for sepsis and construct a competing endogenous RNA (ceRNA) regulatory network. METHODS Subjects included in this project were 23 sepsis patients and 10 healthy people. RNA-seq for lncRNA, miRNA and mRNA was performed in the peripheral blood samples. Differentially expressed RNAs (DER) were screened out for further analysis. GO annotation and GSEA functional clustering were performed to view the functional enrichment of DEmRNAs. Core genes of prognostic significance were screened out with the weighted correlation network analysis (WGCNA). Meta-analysis and Survival analysis was devised in different microarray datasets. RT-qPCR was conducted to validate these core genes. A ceRNA network was accordingly constructed according to the correlation analysis and molecular interaction prediction. RESULTS RNA-seq and differential analysis screened out 1,044 DEmRNAs, 66 DEmiRNAs and 155 DElncRNAs. The GO and GSEA analysis revealed that DEmRNAs are mainly involved in inflammatory response, immune regulation, neutrophil activation. WGCNA revealed 4 potential core genes, including CD247, IL-2Rβ, TGF-βR3 and IL-1R2. In vitro cellular experiment showed up-regulated expression of IL-1R2 while down-regulated of CD247, IL-2Rβ, TGF-βR3 in sepsis patients. Correspondingly, a ceRNA regulatory network was build based on the core genes, and multiple lncRNAs and miRNAs were identified to have a potential regulatory role in sepsis. CONCLUSION This study identified four core genes, including CD247, IL-1R2, IL-2Rβ and TGF-βR3, with potential to be novel biomarkers for the prognosis of sepsis. In the meantime, a ceRNA network was constructed aiming to guide further study on prognostic mechanism in sepsis.
Collapse
Affiliation(s)
- Qian Zhang
- Department of Infectious Diseases, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Chenglin Wang
- Department of Emergency Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Shilin Li
- Department of Emergency Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Yang Li
- Department of Emergency Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Muhu Chen
- Department of Emergency Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Yingchun Hu
- Department of Emergency Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China.
| |
Collapse
|
5
|
Pan-cancer analysis of LncRNA XIST and its potential mechanisms in human cancers. Heliyon 2022; 8:e10786. [PMID: 36212008 PMCID: PMC9535293 DOI: 10.1016/j.heliyon.2022.e10786] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 03/14/2022] [Accepted: 09/20/2022] [Indexed: 11/20/2022] Open
Abstract
Background Methods Results Conclusion
Collapse
|
6
|
Downregulated miR-150-5p in the Tissue of Nasopharyngeal Carcinoma. Genet Res (Camb) 2022; 2022:2485055. [PMID: 36118276 PMCID: PMC9467814 DOI: 10.1155/2022/2485055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 06/01/2022] [Accepted: 07/06/2022] [Indexed: 01/09/2023] Open
Abstract
The clinical significance and potential targets of miR-150-5p have not been elucidated in nasopharyngeal carcinoma (NPC). The pooled analysis based on 539 NPC samples and 75 non-NPC nasopharyngeal samples demonstrated that the expression of miR-150-5p was down-regulated in NPC, with the area under the curve being 0.89 and the standardized mean difference being -0.66. Subsequently, we further screened the differentially expressed genes (DEGs) of 14 datasets, including 312 NPC samples and 70 non-NPC nasopharyngeal samples. After the DEGs were narrowed down with the predicted targets from the miRWalk database, 1316 prospective target genes of miR-150-5p were identified. The enrichment analysis suggested that "pathways in cancer" was the most significant pathway. Finally, six hub genes of "pathways in cancer", including EGFR, TP53, HRAS, CCND1, CDH1, and FGF2, were screened out through the STRING database. In conclusion, the down-regulation of miR-150-5p modulates the tumorigenesis and progression of NPC.
Collapse
|
7
|
Huang WL, Wu SF, Huang X, Zhou S. Integrated Analysis of ECT2 and COL17A1 as Potential Biomarkers for Pancreatic Cancer. DISEASE MARKERS 2022; 2022:9453549. [PMID: 35722628 PMCID: PMC9200569 DOI: 10.1155/2022/9453549] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 05/25/2022] [Indexed: 11/30/2022]
Abstract
Background Pancreatic cancer (PC) is a malignant tumor of the digestive tract. It presents with atypical clinical symptoms and lacks specific diagnostic indicators. This study is aimed at exploring the potential biomarkers of PC. Methods TCGA database pancreatic cancer dataset was normalized and used to identify differentially expressed genes (DEGs). Survival, independent prognostic, and clinical correlation analyses were performed on DEGs to screen for key genes. DNA methylation, mutation, and copy number variation (CNV) analyses were used to analyze genetic variants in key genes. GSEA was performed to explore the functional enrichment of the key genes. Based on the expression of key genes, construction of a competing endogenous RNA (ceRNA) network, analysis of the tumor microenvironment (TME), and prediction of chemotherapeutic drug sensitivity were performed. Furthermore, the GEO database was used to validate the reliability of key genes. Results Two key genes (ECT2 and COL17A1) were identified, which were highly expressed in PC. The mRNA expression of ECT2 and COL17A1 was associated with DNA methylation and CNV. The cell cycle, proteasome, and pathways in cancer were enriched in the high-COL17A1 and ECT2 groups. The TME results showed that immune scores were decreased in the high-ECT2 group. CeRNA network results showed that there were eleven miRNAs were involved in the regulation of ECT2 and COL17A1. Moreover, pRRophetic analysis showed that 20 chemotherapeutic drugs were associated with ECT2 and COL17A1 expression. Conclusions Collectively, ECT2 and COL17A1 may be potential biomarkers for PC, providing a new direction for clinical diagnosis and treatment.
Collapse
Affiliation(s)
- Wen-liang Huang
- MRI Room, The Second Affiliated Hospital of Luohe Medical College, Luohe, China
| | - Shu-fen Wu
- Department of Gynecology and Obstetrics, The Second Affiliated Hospital of Luohe Medical College, Luohe, China
| | - Xiao Huang
- Department of Clinical Laboratory, Zhengzhou University First Affiliated Hospital, Zhengzhou, China
| | - Shan Zhou
- MRI Room, The Second Affiliated Hospital of Luohe Medical College, Luohe, China
| |
Collapse
|
8
|
Retraction: MiRNA-107 enhances the malignant progression of pancreatic cancer by targeting TGFBR3. PLoS One 2022; 17:e0263037. [PMID: 35061812 PMCID: PMC8782327 DOI: 10.1371/journal.pone.0263037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
|
9
|
Principe DR, Timbers KE, Atia LG, Koch RM, Rana A. TGFβ Signaling in the Pancreatic Tumor Microenvironment. Cancers (Basel) 2021; 13:5086. [PMID: 34680235 PMCID: PMC8533869 DOI: 10.3390/cancers13205086] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/05/2021] [Accepted: 10/08/2021] [Indexed: 12/27/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is associated with poor clinical outcomes, largely attributed to incomplete responses to standard therapeutic approaches. Recently, selective inhibitors of the Transforming Growth Factor β (TGFβ) signaling pathway have shown early promise in the treatment of PDAC, particularly as a means of augmenting responses to chemo- and immunotherapies. However, TGFβ is a potent and pleiotropic cytokine with several seemingly paradoxical roles within the pancreatic tumor microenvironment (TME). Although TGFβ signaling can have potent tumor-suppressive effects in epithelial cells, TGFβ signaling also accelerates pancreatic tumorigenesis by enhancing epithelial-to-mesenchymal transition (EMT), fibrosis, and the evasion of the cytotoxic immune surveillance program. Here, we discuss the known roles of TGFβ signaling in pancreatic carcinogenesis, the biologic consequences of the genetic inactivation of select components of the TGFβ pathway, as well as past and present attempts to advance TGFβ inhibitors in the treatment of PDAC patients.
Collapse
Affiliation(s)
- Daniel R. Principe
- Medical Scientist Training Program, University of Illinois College of Medicine, Chicago, IL 60612, USA
- Department of Surgery, University of Illinois at Chicago, Chicago, IL 60607, USA; (K.E.T.); (L.G.A.); (R.M.K.)
| | - Kaytlin E. Timbers
- Department of Surgery, University of Illinois at Chicago, Chicago, IL 60607, USA; (K.E.T.); (L.G.A.); (R.M.K.)
| | - Luke G. Atia
- Department of Surgery, University of Illinois at Chicago, Chicago, IL 60607, USA; (K.E.T.); (L.G.A.); (R.M.K.)
| | - Regina M. Koch
- Department of Surgery, University of Illinois at Chicago, Chicago, IL 60607, USA; (K.E.T.); (L.G.A.); (R.M.K.)
| | - Ajay Rana
- Jesse Brown Veterans Affairs Hospital, Chicago, IL 60612, USA
| |
Collapse
|
10
|
Vieira NF, Serafini LN, Novais PC, Neto FSL, Cirino MLDA, Kemp R, Ardengh JC, Saggioro FP, Gaspar AF, Sankarankutty AK, Júnior JRL, Tirapelli DPDC, dos Santos JS. The role of circulating miRNAs and CA19-9 in pancreatic cancer diagnosis. Oncotarget 2021; 12:1638-1650. [PMID: 34434493 PMCID: PMC8378767 DOI: 10.18632/oncotarget.28038] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 07/27/2021] [Indexed: 01/17/2023] Open
Abstract
Diagnosis and treatment of pancreatic ductal adenocarcinoma (PA) remains a challenge in clinical practice. The aim of this study was to assess the role of microRNAs (miRNAs-21, -23a, -100, -107, -181c, -210) in plasma and tissue as possible biomarkers in the diagnosis of PA. Samples of plasma (PAp-n = 13), pancreatic tumors (PAt-n = 18), peritumoral regions (PPT-n = 9) were collected from patients during the surgical procedure. The control group consisted of samples from patients submitted to pancreatic surgery for trauma or cadaveric organs (PC-n = 7) and healthy volunteers donated blood (PCp-n = 6). The expression profile of microRNAs was measured in all groups using RT-PCR, serum CA19-9 levels were determined in PA and PC. In tissue samples, there was a difference in the expression of miRNAs-21, -210 (p < 0.05) across the PAt, PC and PPT groups. The PAp showed overexpression of miRNAs-181c, -210 (p < 0.05) when compared to PCp. The combination of miRNAs-21, -210 tissue expression and serum CA19-9 showed 100% accuracy in the diagnosis of PA, as well as miR-181c expression in the plasma (PApxPCp). The expression of microRNAs in plasma proved to be a promising tool for a noninvasive detection test for PA, as well as further studies will evaluate the utility of microRNAs expression as biomarkers for prognostic and response to therapy in PA.
Collapse
Affiliation(s)
- Nivaldo Faria Vieira
- Department of Surgery and Anatomy, Medical School of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Luciano Neder Serafini
- Department of Pathology, Medical School of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Paulo Cezar Novais
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, University of Marilia, Marília, Brazil
| | - Fermino Sanches Lizarte Neto
- Department of Surgery and Anatomy, Medical School of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Mucio Luiz de Assis Cirino
- Department of Surgery and Anatomy, Medical School of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Rafael Kemp
- Department of Surgery and Anatomy, Medical School of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - José Celso Ardengh
- Department of Surgery and Anatomy, Medical School of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
- Clinical Hospital of the Medical School of Ribeirão Preto, University of São Paulo, São Paulo, Brazil
| | - Fabiano Pinto Saggioro
- Department of Pathology, Medical School of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
- Clinical Hospital of the Medical School of Ribeirão Preto, University of São Paulo, São Paulo, Brazil
| | - Alberto Facury Gaspar
- Department of Surgery and Anatomy, Medical School of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
- Clinical Hospital of the Medical School of Ribeirão Preto, University of São Paulo, São Paulo, Brazil
| | - Ajith Kumar Sankarankutty
- Department of Surgery and Anatomy, Medical School of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Jorge Resende Lopes Júnior
- Department of Surgery and Anatomy, Medical School of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
- Clinical Hospital of the Medical School of Ribeirão Preto, University of São Paulo, São Paulo, Brazil
| | | | - José Sebastião dos Santos
- Department of Surgery and Anatomy, Medical School of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| |
Collapse
|