1
|
Sampedro F, Urriola PE, van de Ligt JLG, Schroeder DC, Shurson GC. Quantitative risk assessment model of the presence of porcine epidemic diarrhea and African swine fever viruses in spray-dried porcine plasma. Front Vet Sci 2024; 11:1371774. [PMID: 38933699 PMCID: PMC11202310 DOI: 10.3389/fvets.2024.1371774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 05/22/2024] [Indexed: 06/28/2024] Open
Abstract
Introduction There are no microbiological regulatory limits for viruses in animal feed and feed ingredients. Methods A performance objective (PO) was proposed in this study to manufacture a spray-dried porcine plasma (SDPP) batch absent of any infectious viral particles. The PO levels of -7.0, -7.2, and -7.3 log TCID50/g in SDPP were estimated for three batch sizes (10, 15, and 20 tons). Results and discussion A baseline survey on the presence of porcine epidemic diarrhea virus (PEDV) in raw porcine plasma revealed a concentration of -1.0 ± 0.6 log TCID50/mL as calculated using a TCID50-qPCR derived standard curve. The mean African swine fever virus (ASFV) concentration in raw plasma was estimated to be 0.6 log HAD50/mL (0.1-1.4, 95% CI) during a pre-clinical scenario (collected from asymptomatic and undetected viremic pigs). Different processing scenarios (baseline: spray-drying + extended storage) and baseline + ultraviolet (UV) radiation were evaluated to meet the PO levels proposed in this study. The baseline and baseline + UV processing scenarios were >95 and 100% effective in achieving the PO for PEDV by using different batch sizes. For the ASFV in SDPP during a pre-clinical scenario, the PO compliance was 100% for all processing scenarios evaluated. Further research is needed to determine the underlying mechanisms of virus inactivation in feed storage to further advance the implementation of feed safety risk management efforts globally.
Collapse
Affiliation(s)
- Fernando Sampedro
- Division of Environmental Health Sciences, School of Public Health, University of Minnesota, Minneapolis, MN, United States
| | - Pedro E. Urriola
- Department of Veterinary Population Medicine, College of Veterinary Medicine, University of Minnesota, Minneapolis, MN, United States
- Department of Animal Science, College of Agricultural and Natural Resource Sciences, University of Minnesota, St. Paul, MN, United States
| | - Jennifer L. G. van de Ligt
- Department of Veterinary Population Medicine, College of Veterinary Medicine, University of Minnesota, Minneapolis, MN, United States
| | - Declan C. Schroeder
- Department of Veterinary Population Medicine, College of Veterinary Medicine, University of Minnesota, Minneapolis, MN, United States
| | - Gerald C. Shurson
- Department of Animal Science, College of Agricultural and Natural Resource Sciences, University of Minnesota, St. Paul, MN, United States
| |
Collapse
|
2
|
Shurson GC, Urriola PE, Schroeder DC. Biosecurity and Mitigation Strategies to Control Swine Viruses in Feed Ingredients and Complete Feeds. Animals (Basel) 2023; 13:2375. [PMID: 37508151 PMCID: PMC10376163 DOI: 10.3390/ani13142375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 07/17/2023] [Accepted: 07/19/2023] [Indexed: 07/30/2023] Open
Abstract
No system nor standardized analytical procedures at commercial laboratories exist to facilitate and accurately measure potential viable virus contamination in feed ingredients and complete feeds globally. As a result, there is high uncertainty of the extent of swine virus contamination in global feed supply chains. Many knowledge gaps need to be addressed to improve our ability to prevent virus contamination and transmission in swine feed. This review summarizes the current state of knowledge involving: (1) the need for biosecurity protocols to identify production, processing, storage, and transportation conditions that may cause virus contamination of feed ingredients and complete feed; (2) challenges of measuring virus inactivation; (3) virus survival in feed ingredients during transportation and storage; (4) minimum infectious doses; (5) differences between using a food safety objective versus a performance objective as potential approaches for risk assessment in swine feed; (6) swine virus inactivation from thermal and irradiation processes, and chemical mitigants in feed ingredients and complete feed; (7) efficacy of virus decontamination strategies in feed mills; (8) benefits of functional ingredients, nutrients, and commercial feed additives in pig diets during a viral health challenge; and (9) considerations for improved risk assessment models of virus contamination in feed supply chains.
Collapse
Affiliation(s)
- Gerald C Shurson
- Department of Animal Science, University of Minnesota, St. Paul, MN 55108, USA
| | - Pedro E Urriola
- Department of Animal Science, University of Minnesota, St. Paul, MN 55108, USA
| | - Declan C Schroeder
- Department of Veterinary Population Medicine, University of Minnesota, St. Paul, MN 55108, USA
| |
Collapse
|
3
|
Blázquez E, Pujols J, Segalés J, Rodríguez C, Campbell J, Russell L, Polo J. Estimated quantity of swine virus genomes based on quantitative PCR analysis in spray-dried porcine plasma samples collected from multiple manufacturing plants. PLoS One 2022; 17:e0259613. [PMID: 35604901 PMCID: PMC9126402 DOI: 10.1371/journal.pone.0259613] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 04/05/2022] [Indexed: 12/04/2022] Open
Abstract
This survey was conducted to estimate the incidence and level of potential viral contamination in commercially collected porcine plasma. Samples of spray dried porcine plasma (SDPP) were collected over a 12- month period from eight spray drying facilities in Spain, England, Northern Ireland, Brazil, Canada, and the United States. In this survey, viral load for several porcine pathogens including SVA, TGEV, PRRSV (EU and US strains), PEDV, PCV-2, SIV, SDCoV and PPV were determined by qPCR. Regression of Ct on TCID50 of serial diluted stock solution of each virus allowed the estimate of potential viral level in SDPP and unprocessed liquid plasma (using typical solids content of commercially collected porcine plasma). In this survey SVA, TGEV or SDCoV were not detected in any of the SDPP samples. Brazil SDPP samples were free of PRRSV and PEDV. Samples of SDPP from North America primarily contained the PRRSV-US strain while the European samples contained the PRRSV-EU strain (except for one sample from each region containing a relatively low estimated level of the alternative PRRSV strain). Estimated viral level tended to be in the range from <1.0 log10 TCID50 to <2.5 log10 TCID50. Estimated level of SIV was the exception with a very low incidence rate but higher estimated viral load <3.9 log10 TCID50. In summary, the incidence of potential viral contamination in commercially collected porcine plasma was variable and estimated virus level in samples containing viral DNA/RNA was relatively low compared with that occurring at the peak viremia during an infection for all viruses or when considering the minimal infectious dose for each of them.
Collapse
Affiliation(s)
- Elena Blázquez
- IRTA, Centre de Recerca en Sanitat Animal (CReSA-IRTA), Bellaterra, Barcelona, Spain
- APC EUROPE S.L.U., Granollers, Barcelona, Spain
- OIE Collaborating Centre for the Research and Control of Emerging and Reemerging Swine Diseases in Europe (IRTA-CReSA), Bellaterra, Barcelona, Spain
| | - Joan Pujols
- IRTA, Centre de Recerca en Sanitat Animal (CReSA-IRTA), Bellaterra, Barcelona, Spain
- OIE Collaborating Centre for the Research and Control of Emerging and Reemerging Swine Diseases in Europe (IRTA-CReSA), Bellaterra, Barcelona, Spain
| | - Joaquim Segalés
- OIE Collaborating Centre for the Research and Control of Emerging and Reemerging Swine Diseases in Europe (IRTA-CReSA), Bellaterra, Barcelona, Spain
- Departament de Sanitat i Anatomia Animals, Universitat Autònoma de Barcelona (UAB), Bellaterra, Barcelona, Spain
- UAB, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain
| | | | | | | | - Javier Polo
- APC EUROPE S.L.U., Granollers, Barcelona, Spain
- APC LLC, Ankeny, Iowa, United States of America
- * E-mail:
| |
Collapse
|
4
|
Rosell-Cardona C, Griñan-Ferré C, Pérez-Bosque A, Polo J, Pallàs M, Amat C, Moretó M, Miró L. Reply to Nifli, A.-P. Comment on "Rosell-Cardona et al. Dietary Spray-Dried Porcine Plasma Reduces Neuropathological Alzheimer's Disease Hallmarks in SAMP8 Mice. Nutrients 2021, 13, 2369". Nutrients 2021; 13:4065. [PMID: 34836320 PMCID: PMC8625036 DOI: 10.3390/nu13114065] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 11/04/2021] [Indexed: 11/18/2022] Open
Abstract
Thank you for your comments on our recent work of the effects of supplementation with spray-dried porcine plasma (SDP) on neuropathological markers of Alzheimer's disease (AD) [...].
Collapse
Affiliation(s)
- Cristina Rosell-Cardona
- Department of Biochemistry and Physiology, Faculty of Pharmacy and Food Sciences, Institute for Nutrition and Food Safety, Universitat de Barcelona (UB), 08028 Barcelona, Spain; (C.R.-C.); (A.P.-B.); (C.A.); (M.M.)
| | - Christian Griñan-Ferré
- Department of Pharmacology, Toxicology, and Medicinal Chemistry, Faculty of Pharmacy and Food Sciences, Institute of Neurosciences, CIBERNED, Universitat de Barcelona (UB), 08028 Barcelona, Spain; (C.G.-F.); (M.P.)
| | - Anna Pérez-Bosque
- Department of Biochemistry and Physiology, Faculty of Pharmacy and Food Sciences, Institute for Nutrition and Food Safety, Universitat de Barcelona (UB), 08028 Barcelona, Spain; (C.R.-C.); (A.P.-B.); (C.A.); (M.M.)
| | | | - Mercè Pallàs
- Department of Pharmacology, Toxicology, and Medicinal Chemistry, Faculty of Pharmacy and Food Sciences, Institute of Neurosciences, CIBERNED, Universitat de Barcelona (UB), 08028 Barcelona, Spain; (C.G.-F.); (M.P.)
| | - Concepció Amat
- Department of Biochemistry and Physiology, Faculty of Pharmacy and Food Sciences, Institute for Nutrition and Food Safety, Universitat de Barcelona (UB), 08028 Barcelona, Spain; (C.R.-C.); (A.P.-B.); (C.A.); (M.M.)
| | - Miquel Moretó
- Department of Biochemistry and Physiology, Faculty of Pharmacy and Food Sciences, Institute for Nutrition and Food Safety, Universitat de Barcelona (UB), 08028 Barcelona, Spain; (C.R.-C.); (A.P.-B.); (C.A.); (M.M.)
| | - Lluïsa Miró
- Department of Biochemistry and Physiology, Faculty of Pharmacy and Food Sciences, Institute for Nutrition and Food Safety, Universitat de Barcelona (UB), 08028 Barcelona, Spain; (C.R.-C.); (A.P.-B.); (C.A.); (M.M.)
- APC Europe S.L.U., 08403 Granollers, Spain;
| |
Collapse
|