1
|
Chen X, Xu H, Cui W, Zhao M, Zhu B. Systematical explorations of forensic feature and population genetic diversity of the Chinese Mongolian group from northwest China via a self-constructed Multi-InDel panel. Forensic Sci Res 2024; 9:owad047. [PMID: 38560582 PMCID: PMC10981549 DOI: 10.1093/fsr/owad047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Accepted: 10/16/2023] [Indexed: 04/04/2024] Open
Abstract
This study aimed to investigate the genetic polymorphisms and population characteristics of Chinese Mongolian group from northwest China (NCM) through a self-developed panel including 43 autosomal insertion/deletion (A-InDel) polymorphism genetic markers. Herein, 288 unrelated healthy individuals from the NCM group were employed to obtain the genetic data of 43 A-InDels through multiplex PCR amplification and InDel genotyping using capillary electrophoresis platform. In addition, multiplex population genetic analyses were performed between the NCM group and 27 reference populations. There were no deviations at 43 loci from Hardy-Weinberg equilibrium in the NCM group. The observed heterozygosity (Ho) values ranged from 0.312 8 to 0.559 2, and the combined power of discrimination (CPD) and cumulative probability of exclusion (CPE) values in the NCM group were 0.999 999 999 999 999 998 77 and 0.999 814, respectively. The forensic parameter values indicated that this panel was polymorphic and informative in the NCM group and could be used as an effective tool for forensic personal identification. Furthermore, the results of pairwise genetic distances, principal component analysis, multidimensional scaling analysis, phylogenetic tree construction, and admixture analysis among the NCM group and 27 reference populations revealed that there were closer genetic relationships between the NCM group and East Asian populations, especially Chinese Hui group (CHH) from the northwest China, which is consistent with the geographical location. These present findings contributed to the ongoing genetic explorations and insights into the genetic architecture of the NCM group.
Collapse
Affiliation(s)
- Xuebing Chen
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou, China
| | - Hui Xu
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou, China
| | - Wei Cui
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou, China
| | - Ming Zhao
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou, China
| | - Bofeng Zhu
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou, China
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an, China
- Clinical Research Center of Shaanxi Province for Dental and Maxillofacial Diseases, College of Stomatology, Xi'an, China
| |
Collapse
|
2
|
Zhang J, Toremurat Z, Liang Y, Cheng J, Sun Z, Huang Y, Liu J, Chaogetu BUREN, Ren G, Chen H. Study on the Association between LRRC8B Gene InDel and Sheep Body Conformation Traits. Genes (Basel) 2023; 14:genes14020356. [PMID: 36833283 PMCID: PMC9956668 DOI: 10.3390/genes14020356] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 12/23/2022] [Accepted: 01/16/2023] [Indexed: 01/31/2023] Open
Abstract
Marker-assisted selection is an important method for livestock breeding. In recent years, this technology has been gradually applied to livestock breeding to improve the body conformation traits. In this study, the LRRC8B (Leucine Rich Repeat Containing 8 VRAC Subunit B) gene was selected to evaluate the association between its genetic variations and the body conformation traits in two native sheep breeds in China. Four body conformation traits, including withers height, body length, chest circumference, and body weight, were collected from 269 Chaka sheep. We also collected the body length, chest width, withers height, chest depth, chest circumference, cannon bone circumference, and height at hip cross of 149 Small-Tailed Han sheep. Two different genotypes, ID and DD, were detected in all sheep. Our data showed that the polymorphism of the LRRC8B gene was significantly associated with chest depth (p < 0.05) in Small-Tailed Han sheep, and it is greater in sheep with DD than those with ID. In conclusion, our data suggested that the LRRC8B gene could serve as a candidate gene for marker-assisted selection in Small-Tailed Han sheep.
Collapse
Affiliation(s)
- Jiaqiang Zhang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Xianyang 712100, China
| | - Zhansaya Toremurat
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Xianyang 712100, China
| | - Yilin Liang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Xianyang 712100, China
| | - Jie Cheng
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Xianyang 712100, China
| | - Zhenzhen Sun
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Xianyang 712100, China
| | - Yangming Huang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Xianyang 712100, China
| | - Junxia Liu
- College of Life Sciences, Northwest A&F University, Xianyang 712100, China
| | - BUREN Chaogetu
- Animal Disease Control Center of Haixi Mongolian and Tibetan Autonomous Prefecture, Delingha 817000, China
| | - Gang Ren
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Xianyang 712100, China
- Correspondence: (G.R.); (H.C.); Tel.: +86-029-87092102 (H.C.); Fax: +86-029-87092164 (H.C.)
| | - Hong Chen
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Xianyang 712100, China
- College of Animal Science, Xinjiang Agricultural University, Urumqi 830052, China
- Correspondence: (G.R.); (H.C.); Tel.: +86-029-87092102 (H.C.); Fax: +86-029-87092164 (H.C.)
| |
Collapse
|
3
|
Fang Y, Liu Y, Xu H, Zhu B. Performance evaluation of an in-house panel containing 59 autosomal InDels for forensic identification in Chinese Hui and Mongolian groups. Genomics 2023; 115:110552. [PMID: 36565793 DOI: 10.1016/j.ygeno.2022.110552] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/31/2022] [Accepted: 12/20/2022] [Indexed: 12/24/2022]
Abstract
In recent years, a novel multiplex system containing two mini-short tandem repeats, 59 autosomal InDels, two Y-chromosomal InDels, and the Amelogenin gene with all amplicons less than 200 bp has been constructed and validated by ourselves for forensic degration sample, and its forensic application efficiency has been studied in Chinese some populations. Herein, the population genetic polymorphisms of these loci were investigated in Chinese Hui (n = 249) and Mongolian (n = 222) ethnic groups using direct multiplex amplification and capillary electrophoresis platform. The forensic identification efficiencies of this self-developed system were further evaluated in these two groups. And the results showed that the values of the combined power of discrimination were 0.9999999999999999999999999999006 (Hui) and 0.999999999999999999999999999738 (Mongolian), respectively. Moreover, the combined power of exclusion values were 0.99999817 (Hui) and 0.99999779 (Mongolian). The 59 autosomal InDels used in this study exhibited high forensic identification efficiencies in 10 East Asian populations, which was also expected to be a new powerful tool for identifying degraded biological materials in East Asian populations.
Collapse
Affiliation(s)
- Yating Fang
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou 510515, China; School of Basic Medical Sciences, Anhui Medical University, Anhui 230031, China
| | - Yanfang Liu
- Laboratory of Fundamental Nursing Research, School of Nursing, Guangdong Medical University, Dongguan, China
| | - Hui Xu
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou 510515, China
| | - Bofeng Zhu
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou 510515, China; College of Forensic Medicine, Xi'an Jiaotong University Health Science Center, Xi'an 710061, China.
| |
Collapse
|