1
|
Tang Y, Tang Z, Zhou Y, Luo Y, Wen X, Yang Z, Jiang T, Luo N. A systematic review of resting-state functional-MRI studies in the diagnosis, comorbidity and treatment of postpartum depression. J Affect Disord 2025; 383:153-166. [PMID: 40288455 DOI: 10.1016/j.jad.2025.04.142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2024] [Revised: 04/22/2025] [Accepted: 04/23/2025] [Indexed: 04/29/2025]
Abstract
BACKGROUND Postpartum depression (PPD) is a common and serious mental health problem that affects many new mothers and their families worldwide. In recent years, there has been an increasing number of studies using magnetic resonance techniques (MRI), particularly functional MRI (fMRI), to explore the neuroimaging biomarker of this disease. METHODS PubMed database was used to search for English literature focusing on resting-state fMRI and PPD published up to June 2024. RESULTS After screening, 17 studies were finally identified, among which all 17 studies reported abnormal regions or connectivity compared to health controls (HC), 4 studies reported results considering the differences between PPD and PPD with anxiety (PPD-A), and 2 studies reported biomarkers for the treatment of PPD. The existing studies indicate that PPD is characterized by functional impairments in multiple brain regions, especially the medial prefrontal cortex (MPFC), precentral gyrus and cerebellum. Abnormal functional connectivity has been widely reported in the dorsomedial prefrontal cortex (dmPFC), anterior cingulate cortex (ACC) and the orbitofrontal cortex (OFC). However, none of the four comorbidity studies identified overlapping discriminative biomarkers between PPD and PPD-A. Additionally, the two treatment-related studies consistently reported functional improvements in the amygdala after effective treatment. CONCLUSION The affected brain regions were highly overlapped with major depressive disorder (MDD), suggesting that PPD may be categorized as a potential subtype of MDD. Considering the negative effects of medication on PPD, future efforts should focus on developing non-pharmacological therapies, such as transcranial magnetic stimulation (TMS) and acupuncture, to support women with PPD in overcoming this unique and important phase.
Collapse
Affiliation(s)
- Yanyan Tang
- Yongzhou Central Hospital, Yongzhou 425000, China; Xiaoxiang Institute for Brain Health, Yongzhou 425000, China
| | - Zhongyuan Tang
- Xiaoxiang Institute for Brain Health, Yongzhou 425000, China
| | - Ying Zhou
- Yongzhou Central Hospital, Yongzhou 425000, China; Xiaoxiang Institute for Brain Health, Yongzhou 425000, China
| | - Yi Luo
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Xinyu Wen
- Sino-Danish College, University of Chinese Academy of Sciences, Beijing 101408, China
| | - Zhengyi Yang
- Xiaoxiang Institute for Brain Health, Yongzhou 425000, China; Beijing Key Laboratory of Brainnetome and Brain-Computer Interface, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China; Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China
| | - Tianzi Jiang
- Xiaoxiang Institute for Brain Health, Yongzhou 425000, China; Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing 100700, China; Sino-Danish College, University of Chinese Academy of Sciences, Beijing 101408, China; Beijing Key Laboratory of Brainnetome and Brain-Computer Interface, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China; Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China
| | - Na Luo
- Xiaoxiang Institute for Brain Health, Yongzhou 425000, China; Beijing Key Laboratory of Brainnetome and Brain-Computer Interface, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China; Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China.
| |
Collapse
|
2
|
Chen K, Ma Y, Yang R, Li F, Li W, Chen J, Shao H, He C, Chen M, Luo Y, Cheng B, Wang J. Shared and disorder-specific large-scale intrinsic and effective functional network connectivities in postpartum depression with and without anxiety. Cereb Cortex 2024; 34:bhae478. [PMID: 39668426 DOI: 10.1093/cercor/bhae478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 10/30/2024] [Accepted: 11/28/2024] [Indexed: 12/14/2024] Open
Abstract
Postpartum depression and postpartum depression with anxiety, which are highly prevalent and debilitating disorders, become a growing public concern. The high overlap on the symptomatic and neurobiological levels led to ongoing debates about their diagnostic and neurobiological uniqueness. Delineating the shared and disorder-specific intrinsic functional connectivities and their causal interactions is fundamental to precision diagnosis and treatment. In this study, we recruited 138 participants including 45 postpartum depression, 31 postpartum depression comorbid with anxiety patients, and 62 healthy postnatal women with age ranging from 23 to 40 years. We combined independent component analysis, resting-state functional connectivity, and Granger causality analysis to reveal the abnormal intrinsic functional couplings and their causal interactions in postpartum depression and postpartum depression comorbid with anxiety from a large-scale brain network perspective. We found that they exhibited widespread abnormalities in intrinsic and effective functional network connectivities. Importantly, the intrinsic and effective functional network connectivities within or between the fronto-parietal network, default model network, ventral and dorsal attention network, sensorimotor network, and visual network, especially the functional imbalances between primary and association cortices could serve as effective neural markers to differentiate postpartum depression, postpartum depression comorbid with anxiety, and healthy controls. Our findings provide the initial evidence for shared and disorder-specific intrinsic and effective functional network connectivities for postpartum depression and postpartum depression comorbid with anxiety, which provide an underlying neuropathological basis for postpartum depression or postpartum depression comorbid with anxiety to facilitate precision diagnosis and therapy in future studies.
Collapse
Affiliation(s)
- Kexuan Chen
- Faculty of Life Science and Technology, Kunming University of Science and Technology, No. 727 Jingming South Road, Chenggong District, Kunming 650500, China
- Medical School, Kunming University of Science and Technology, No. 727 Jingming South Road, Chenggong District, Kunming 650500, China
| | - Yingzi Ma
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, No. 727 Jingming South Road, Chenggong District, Kunming 650500, China
- Yunnan Key Laboratory of Primate Biomedical Research, No. 727 Jingming South Road, Chenggong District, Kunming 650500, China
| | - Rui Yang
- Medical School, Kunming University of Science and Technology, No. 727 Jingming South Road, Chenggong District, Kunming 650500, China
| | - Fang Li
- Medical School, Kunming University of Science and Technology, No. 727 Jingming South Road, Chenggong District, Kunming 650500, China
| | - Wei Li
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, No. 727 Jingming South Road, Chenggong District, Kunming 650500, China
- Yunnan Key Laboratory of Primate Biomedical Research, No. 727 Jingming South Road, Chenggong District, Kunming 650500, China
| | - Jin Chen
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, No. 727 Jingming South Road, Chenggong District, Kunming 650500, China
- Yunnan Key Laboratory of Primate Biomedical Research, No. 727 Jingming South Road, Chenggong District, Kunming 650500, China
| | - Heng Shao
- Department of Geriatrics, The First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, No. 157 Jinbi Road, Xishan District, Kunming 650500, China
| | - Chongjun He
- People's Hospital of Lijiang, The Affiliated Hospital of Kunming University of Science and Technology, No. 526, Fuhui Road, Gucheng District, Lijiang 674100, China
| | - Meiling Chen
- Department of Clinical Psychology, The First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, No. 157 Jinbi Road, Xishan District, Kunming 650500, China
| | - Yuejia Luo
- Medical School, Kunming University of Science and Technology, No. 727 Jingming South Road, Chenggong District, Kunming 650500, China
- Center for Brain Disorders and Cognitive Sciences, School of Psychology, Shenzhen University, No. 3688, Nanhai Avenue, Nanshan District, Shenzhen 518061, China
- The State Key Lab of Cognitive and Learning, Faculty of Psychology, Beijing Normal University, No. 19 Xinjiekouwai Street, Haidian District, Beijing 100875, China
| | - Bochao Cheng
- Department of Radiology, West China Second University Hospital of Sichuan University, No. 20, Section 3, Renmin South Road, Wuhou District, Chengdu 610041, China
| | - Jiaojian Wang
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, No. 727 Jingming South Road, Chenggong District, Kunming 650500, China
- Yunnan Key Laboratory of Primate Biomedical Research, No. 727 Jingming South Road, Chenggong District, Kunming 650500, China
| |
Collapse
|
3
|
Haigler K, Finnegan MK, Laurent H. A common neural response to perceiving but not implicitly regulating infant and adult affect in postpartum mothers. Soc Neurosci 2024; 19:259-272. [PMID: 39462765 DOI: 10.1080/17470919.2024.2419650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 08/16/2024] [Indexed: 10/29/2024]
Abstract
The transition to parenthood requires parents develop caregiving behaviors, such as the ability to identify their infant's emotions and regulate their own emotional response. Research has identified patterns of neural activation in parenting contexts that are interpreted as socioemotional processing. However, no prior research has directly tested whether mothers' neural responses to their infant's affect are the same as those involved in emotion perception/experience and regulation in other contexts. We employed conjunction analyses to clarify which components of mothers' neural response to viewing their infant's affect are shared with passively viewing and labeling adult affective faces (emotion perception/experience and implicit emotion regulation, respectively) in 24 mothers three months postpartum. Our results support a common neural response to viewing infant and adult affect in regions associated with emotion perception/experience (bilateral hippocampi, amygdalae, thalami, orbitofrontal cortex, and ventrolateral prefrontal cortex), but no areas of common response to viewing negative infant affect and implicitly regulating negative adult affect outside of the occipital lobe and cerebellum. This study provides corroborating evidence for shared neural patterns being involved in perceiving/experiencing infant and adult affect but not implicit regulation of infant and adult negative affect.
Collapse
Affiliation(s)
- Katherine Haigler
- Human Development and Family Studies Department, Pennsylvania State University, University Park, PA, USA
| | - Megan K Finnegan
- Clinical-Community Psychology and Neuroscience, University of Illinois Urbana-Champaign, Champaign-Urbana, IL, USA
| | - Heidemarie Laurent
- Human Development and Family Studies Department, Pennsylvania State University, University Park, PA, USA
| |
Collapse
|
4
|
Bortolini T, Laport MC, Latgé-Tovar S, Fischer R, Zahn R, de Oliveira-Souza R, Moll J. The extended neural architecture of human attachment: An fMRI coordinate-based meta-analysis of affiliative studies. Neurosci Biobehav Rev 2024; 159:105584. [PMID: 38367888 DOI: 10.1016/j.neubiorev.2024.105584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 01/30/2024] [Accepted: 02/12/2024] [Indexed: 02/19/2024]
Abstract
Functional imaging studies and clinical evidence indicate that cortical areas relevant to social cognition are closely integrated with evolutionarily conserved basal forebrain structures and neighboring regions, enabling human attachment and affiliative emotions. The neural circuitry of human affiliation is continually being unraveled as functional magnetic resonance imaging (fMRI) becomes increasingly prevalent, with studies examining human brain responses to various attachment figures. However, previous fMRI meta-analyses on affiliative stimuli have encountered challenges, such as low statistical power and the absence of robustness measures. To address these issues, we conducted an exhaustive coordinate-based meta-analysis of 79 fMRI studies, focusing on personalized affiliative stimuli, including one's infants, family, romantic partners, and friends. We employed complementary coordinate-based analyses (Activation Likelihood Estimation and Signed Differential Mapping) and conducted a robustness analysis of the results. Findings revealed cluster convergence in cortical and subcortical structures related to reward and motivation, salience detection, social bonding, and cognition. Our study thoroughly explores the neural correlates underpinning affiliative responses, effectively overcoming the limitations noted in previous meta-analyses. It provides an extensive view of the neural substrates associated with affiliative stimuli, illuminating the intricate interaction between cortical and subcortical regions. Our findings significantly contribute to understanding the neurobiology of human affiliation, expanding the known human attachment circuitry beyond the traditional basal forebrain regions observed in other mammals to include uniquely human isocortical structures.
Collapse
Affiliation(s)
- Tiago Bortolini
- Cognitive Neuroscience and Neuroinformatics Unit, The D'Or Institute for Research and Education (IDOR), Rio de Janeiro, Brazil; IDOR - Pioneer Science Initiative, São Paulo, Brazil.
| | - Maria Clara Laport
- Cognitive Neuroscience and Neuroinformatics Unit, The D'Or Institute for Research and Education (IDOR), Rio de Janeiro, Brazil
| | - Sofia Latgé-Tovar
- Institute of Psychiatry, Center for Alzheimer's Disease, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, Brazil
| | - Ronald Fischer
- Cognitive Neuroscience and Neuroinformatics Unit, The D'Or Institute for Research and Education (IDOR), Rio de Janeiro, Brazil; IDOR - Pioneer Science Initiative, São Paulo, Brazil; School of Psychology, PO Box 600, Victoria University of Wellington, Wellington 6021, New Zealand
| | - Roland Zahn
- Centre for Affective Disorders, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London SE5 8AF, UK
| | - Ricardo de Oliveira-Souza
- Cognitive Neuroscience and Neuroinformatics Unit, The D'Or Institute for Research and Education (IDOR), Rio de Janeiro, Brazil; The Federal University of the State of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Jorge Moll
- Cognitive Neuroscience and Neuroinformatics Unit, The D'Or Institute for Research and Education (IDOR), Rio de Janeiro, Brazil; IDOR - Pioneer Science Initiative, São Paulo, Brazil
| |
Collapse
|
5
|
Aran Ö, Phu T, Erhart A, Watamura S, Kim P. Neural activation to infant cry among Latina and non-Latina White mothers. Behav Brain Res 2023; 441:114298. [PMID: 36646254 PMCID: PMC9988217 DOI: 10.1016/j.bbr.2023.114298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 12/23/2022] [Accepted: 01/10/2023] [Indexed: 01/15/2023]
Abstract
Cultural neuroscience is an emerging framework positing that culture (for example, values, beliefs, practices, and modes of emotional expression) critically informs socialization goals and desired behaviors, which are perhaps accompanied by differential patterns of brain activation. Using fMRI, the current study examines brain activation to infant cry stimuli and matched white noise among 50 first-time biological mothers identifying as Latina or White in the United States. Results showed that brain activation to infant cries in the right posterior insula, left cerebellum, and left auditory were higher for White mothers compared to Latina mothers, p's < .05. White mothers showed greater activation to cry sounds compared to white noise in the right dorsolateral prefrontal cortex, left somatosensory, right and left premotor cortices, p's < .05, whereas Latina mothers did not. These brain regions are involved in motor planning, movement, sensory processing, and social information processing. It is important to note that mothers in the two groups did not show differences in stress and behavioral parenting measures. Therefore, Latina and White mothers differentially recruiting brain regions related to infant parenting behaviors indicates the potential role of cultural context in shaping patterns of neural activation. Our exploratory analysis suggests that this difference might be due to greater pre-parenting exposure among Latina mothers to children compared to White mothers. Taken together, although our data did not completely explain the differences in brain activation between groups, findings suggest potential culture-related influences in brain activation occurring in the postpartum period.
Collapse
Affiliation(s)
- Özlü Aran
- Department of Psychology, University of Denver, CO, USA.
| | - Tiffany Phu
- Department of Psychology, University of Denver, CO, USA.
| | - Andrew Erhart
- Department of Psychology, University of Denver, CO, USA; Colorado Department of Public Health and Environment, CO, USA
| | | | - Pilyoung Kim
- Department of Psychology, University of Denver, CO, USA
| |
Collapse
|