1
|
Li P, Jiang Z, Liu T, Liu X, Qiao H, Yao X. Improving drug response prediction via integrating gene relationships with deep learning. Brief Bioinform 2024; 25:bbae153. [PMID: 38600666 PMCID: PMC11006795 DOI: 10.1093/bib/bbae153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 03/05/2024] [Accepted: 03/18/2024] [Indexed: 04/12/2024] Open
Abstract
Predicting the drug response of cancer cell lines is crucial for advancing personalized cancer treatment, yet remains challenging due to tumor heterogeneity and individual diversity. In this study, we present a deep learning-based framework named Deep neural network Integrating Prior Knowledge (DIPK) (DIPK), which adopts self-supervised techniques to integrate multiple valuable information, including gene interaction relationships, gene expression profiles and molecular topologies, to enhance prediction accuracy and robustness. We demonstrated the superior performance of DIPK compared to existing methods on both known and novel cells and drugs, underscoring the importance of gene interaction relationships in drug response prediction. In addition, DIPK extends its applicability to single-cell RNA sequencing data, showcasing its capability for single-cell-level response prediction and cell identification. Further, we assess the applicability of DIPK on clinical data. DIPK accurately predicted a higher response to paclitaxel in the pathological complete response (pCR) group compared to the residual disease group, affirming the better response of the pCR group to the chemotherapy compound. We believe that the integration of DIPK into clinical decision-making processes has the potential to enhance individualized treatment strategies for cancer patients.
Collapse
Affiliation(s)
- Pengyong Li
- School of Computer Science and Technology,Xidian University, 710126 Xi’an, Shaanxi, China
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, 519020 Macau, China
| | - Zhengxiang Jiang
- School of Electronic Engineering, Xidian University, 710126 Xi’an, Shaanxi, China
| | - Tianxiao Liu
- School of Computer Science and Technology,Xidian University, 710126 Xi’an, Shaanxi, China
| | - Xinyu Liu
- Beijing Laboratory of Biomedical Materials, Department of Geriatric Dentistry, Peking University School and Hospital of Stomatology, 100081 Beijing, China
| | - Hui Qiao
- Department of Oncology, Tai’an Municipal Hospital, 271021 Tai’an, Shandong, China
| | - Xiaojun Yao
- Centre for Artificial Intelligence Driven Drug Discovery, Faculty of Applied Sciences, Macao Polytechnic University, 999078 Macao, China
| |
Collapse
|
2
|
Li Y, Guo Z, Gao X, Wang G. MMCL-CDR: enhancing cancer drug response prediction with multi-omics and morphology images contrastive representation learning. Bioinformatics 2023; 39:btad734. [PMID: 38070154 PMCID: PMC10756335 DOI: 10.1093/bioinformatics/btad734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 11/09/2023] [Indexed: 12/30/2023] Open
Abstract
MOTIVATION Cancer is a complex disease that results in a significant number of global fatalities. Treatment strategies can vary among patients, even if they have the same type of cancer. The application of precision medicine in cancer shows promise for treating different types of cancer, reducing healthcare expenses, and improving recovery rates. To achieve personalized cancer treatment, machine learning models have been developed to predict drug responses based on tumor and drug characteristics. However, current studies either focus on constructing homogeneous networks from single data source or heterogeneous networks from multiomics data. While multiomics data have shown potential in predicting drug responses in cancer cell lines, there is still a lack of research that effectively utilizes insights from different modalities. Furthermore, effectively utilizing the multimodal knowledge of cancer cell lines poses a challenge due to the heterogeneity inherent in these modalities. RESULTS To address these challenges, we introduce MMCL-CDR (Multimodal Contrastive Learning for Cancer Drug Responses), a multimodal approach for cancer drug response prediction that integrates copy number variation, gene expression, morphology images of cell lines, and chemical structure of drugs. The objective of MMCL-CDR is to align cancer cell lines across different data modalities by learning cell line representations from omic and image data, and combined with structural drug representations to enhance the prediction of cancer drug responses (CDR). We have carried out comprehensive experiments and show that our model significantly outperforms other state-of-the-art methods in CDR prediction. The experimental results also prove that the model can learn more accurate cell line representation by integrating multiomics and morphological data from cell lines, thereby improving the accuracy of CDR prediction. In addition, the ablation study and qualitative analysis also confirm the effectiveness of each part of our proposed model. Last but not least, MMCL-CDR opens up a new dimension for cancer drug response prediction through multimodal contrastive learning, pioneering a novel approach that integrates multiomics and multimodal drug and cell line modeling. AVAILABILITY AND IMPLEMENTATION MMCL-CDR is available at https://github.com/catly/MMCL-CDR.
Collapse
Affiliation(s)
- Yang Li
- College of Computer and Control Engineering, Northeast Forestry University, Harbin 150006, China
| | - Zihou Guo
- College of Computer and Control Engineering, Northeast Forestry University, Harbin 150006, China
| | - Xin Gao
- Computational Bioscience Research Center, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
- Computer Science Program, Computer, Electrical and Mathematical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Guohua Wang
- College of Computer and Control Engineering, Northeast Forestry University, Harbin 150006, China
| |
Collapse
|
3
|
Lee J, Kim M, Han K, Yoon S. StringFix: an annotation-guided transcriptome assembler improves the recovery of amino acid sequences from RNA-Seq reads. Genes Genomics 2023; 45:1599-1609. [PMID: 37837515 DOI: 10.1007/s13258-023-01458-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 10/01/2023] [Indexed: 10/16/2023]
Abstract
BACKGROUND Reconstruction of amino acid sequences from assembled transcriptome is of interest in personalized medicine, for example, to predict drug-target (or protein-protein) interaction considering individual's genomic variations. Most of the existing transcriptome assemblers, however, seems not well suited for this purpose. METHODS In this work, we present StringFix, an annotation guided transcriptome assembly and protein sequence reconstruction software tool that takes genome-aligned reads and the annotations associated to the reference genome as input. The tool 'fixes' the pre-annotated transcript sequence by taking small variations into account, finally to produce possible amino acid sequences that are likely to exist in the test tissue. RESULTS The results show that, using outputs from existing reference-based assemblers as the input GTF-guide, StringFix could reconstruct amino acid sequences more precisely with higher sensitivity than direct generation using the recovered transcripts from all the assemblers we tested. CONCLUSION By using StringFix with the existing reference-based assemblers, one can recover not only a novel transcripts and isoforms but also the possible amino acid sequence stemming from them.
Collapse
Affiliation(s)
- Joongho Lee
- Dept. of Computer Science, College of SW Convergence, Dankook Univ, Yongin-si, 16890, Korea
| | - Minsoo Kim
- Dept. of Computer Science, College of SW Convergence, Dankook Univ, Yongin-si, 16890, Korea
| | - Kyudong Han
- Center for Bio-Medical Engineering Core Facility, Dankook Univ, Cheonan, 31116, Korea
- Dept. of Microbiology, College of Science & Technology, Dankook Univ, Cheonan, 31116, Korea
- HuNbiome Co., Ltd, R&D Center, Seoul, 08503, Korea
| | - Seokhyun Yoon
- Dept. of Electronics and Electrical Engineering, College of Engineering, Dankook Univ, Yongin-si, 16890, Korea.
| |
Collapse
|
4
|
Singh DP, Kaushik B. CTDN (Convolutional Temporal Based Deep- Neural Network): An Improvised Stacked Hybrid Computational Approach for Anticancer Drug Response Prediction. Comput Biol Chem 2023; 105:107868. [PMID: 37257399 DOI: 10.1016/j.compbiolchem.2023.107868] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 03/31/2023] [Accepted: 04/04/2023] [Indexed: 06/02/2023]
Abstract
The characterization of drug - metabolizing enzymes is a significant problem for customized therapy. It is important to choose the right drugs for cancer victims, and the ability to forecast how those drugs will react is usually based on the available information, genetic sequence, and structural properties. To the finest of our knowledge, this is the first study to evaluate optimization algorithms for selection of features and pharmacogenetics categorization using classification methods based on a successful evolutionary algorithm using datasets from the Cancer Cell Line Encyclopaedia (CCLE) and Genomics of Drug Sensitivity in Cancer (GDSC). The study proposes the uses of Firefly and Grey Wolf Optimization techniques for feature extraction, while comparing the traditional Machine Learning (ML), ensemble ML and Stacking Algorithm with the proposed Convolutional Temporal Deep Neural Network or CTDN. With the potential to increase efficiency from the suggested intelligible classifier model for a suggestive chemotherapeutic drugs response prediction, our study is important in particular for selecting an acceptable feature selection method. The comparison analysis demonstrates that the proposed model not only surpasses the prior state-of-the-art methods, but also uses Grey Wolf and Fire Fly Optimization to lessen multicollinearity and overfitting.
Collapse
Affiliation(s)
- Davinder Paul Singh
- School of Computer Science and Engineering, Shri Mata Vaishno Devi University, Katra 182320, Jammu and Kashmir, India.
| | - Baijnath Kaushik
- School of Computer Science and Engineering, Shri Mata Vaishno Devi University, Katra 182320, Jammu and Kashmir, India
| |
Collapse
|
5
|
Liu XY, Mei XY. Prediction of drug sensitivity based on multi-omics data using deep learning and similarity network fusion approaches. Front Bioeng Biotechnol 2023; 11:1156372. [PMID: 37139048 PMCID: PMC10150883 DOI: 10.3389/fbioe.2023.1156372] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 03/31/2023] [Indexed: 05/05/2023] Open
Abstract
With the rapid development of multi-omics technologies and accumulation of large-scale bio-datasets, many studies have conducted a more comprehensive understanding of human diseases and drug sensitivity from multiple biomolecules, such as DNA, RNA, proteins and metabolites. Using single omics data is difficult to systematically and comprehensively analyze the complex disease pathology and drug pharmacology. The molecularly targeted therapy-based approaches face some challenges, such as insufficient target gene labeling ability, and no clear targets for non-specific chemotherapeutic drugs. Consequently, the integrated analysis of multi-omics data has become a new direction for scientists to explore the mechanism of disease and drug. However, the available drug sensitivity prediction models based on multi-omics data still have problems such as overfitting, lack of interpretability, difficulties in integrating heterogeneous data, and the prediction accuracy needs to be improved. In this paper, we proposed a novel drug sensitivity prediction (NDSP) model based on deep learning and similarity network fusion approaches, which extracts drug targets using an improved sparse principal component analysis (SPCA) method for each omics data, and construct sample similarity networks based on the sparse feature matrices. Furthermore, the fused similarity networks are put into a deep neural network for training, which greatly reduces the data dimensionality and weakens the risk of overfitting problem. We use three omics of data, RNA sequence, copy number aberration and methylation, and select 35 drugs from Genomics of Drug Sensitivity in Cancer (GDSC) for experiments, including Food and Drug Administration (FDA)-approved targeted drugs, FDA-unapproved targeted drugs and non-specific therapies. Compared with some current deep learning methods, our proposed method can extract highly interpretable biological features to achieve highly accurate sensitivity prediction of targeted and non-specific cancer drugs, which is beneficial for the development of precision oncology beyond targeted therapy.
Collapse
Affiliation(s)
- Xiao-Ying Liu
- Guangdong Polytechnic of Science and Technology, Zhuhai, China
- *Correspondence: Xiao-Ying Liu,
| | - Xin-Yue Mei
- Institute of Systems Engineering, Macau University of Science and Technology, Taipa, China
| |
Collapse
|
6
|
Xu C, Liu Z, Yan C, Xiao J. Application of apoptosis-related genes in a multiomics-related prognostic model study of gastric cancer. Front Genet 2022; 13:901200. [PMID: 35991578 PMCID: PMC9389051 DOI: 10.3389/fgene.2022.901200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 07/12/2022] [Indexed: 12/24/2022] Open
Abstract
Gastric cancer (GC) is one of the most common tumors in the world, and apoptosis is closely associated with GC. A number of therapeutic methods have been implemented to increase the survival in GC patients, but the outcomes remain unsatisfactory. Apoptosis is a highly conserved form of cell death, but aberrant regulation of the process also leads to a variety of major human diseases. As variations of apoptotic genes may increase susceptibility to gastric cancer. Thus, it is critical to identify novel and potent tools to predict the overall survival (OS) and treatment efficacy of GC. The expression profiles and clinical characteristics of TCGA-STAD and GSE15459 cohorts were downloaded from TCGA and GEO. Apoptotic genes were extracted from the GeneCards database. Apoptosis risk scores were constructed by combining Cox regression and LASSO regression. The GSE15459 and TCGA internal validation sets were used for external validation. Moreover, we explored the relationship between the apoptosis risk score and clinical characteristics, drug sensitivity, tumor microenvironment (TME) and tumor mutational burden (TMB). Finally, we used GSVA to further explore the signaling pathways associated with apoptosis risk. By performing TCGA-STAD differential analysis, we obtained 839 differentially expressed genes, which were then analyzed by Cox regressions and LASSO regression to establish 23 genes associated with apoptosis risk scores. We used the test validation cohort from TCGA-STAD and the GSE15459 dataset for external validation. The AUC values of the ROC curve for 2-, 3-, and 5-years survival were 0.7, 0.71, and 0.71 in the internal validation cohort from TCGA-STAD and 0.77, 0.74, and 0.75 in the GSE15459 dataset, respectively. We constructed a nomogram by combining the apoptosis risk signature and some clinical characteristics from TCGA-STAD. Analysis of apoptosis risk scores and clinical characteristics demonstrated notable differences in apoptosis risk scores between survival status, sex, grade, stage, and T stage. Finally, the apoptosis risk score was correlated with TME characteristics, drug sensitivity, TMB, and TIDE scores.
Collapse
Affiliation(s)
- Chengfei Xu
- Chengdu Medical College, Chengdu, China
- School of Clinical Medicine, Chengdu Medical College, Chengdu, China
| | - Zilin Liu
- Chengdu Medical College, Chengdu, China
- School of Clinical Medicine, Chengdu Medical College, Chengdu, China
| | - Chuanjing Yan
- Chengdu Medical College, Chengdu, China
- School of Clinical Medicine, Chengdu Medical College, Chengdu, China
- *Correspondence: Chuanjing Yan, ; Jiangwei Xiao,
| | - Jiangwei Xiao
- Chengdu Medical College, Chengdu, China
- School of Clinical Medicine, Chengdu Medical College, Chengdu, China
- *Correspondence: Chuanjing Yan, ; Jiangwei Xiao,
| |
Collapse
|
7
|
Mahajan RA, Shaikh NK, Tikhe TB, Vyas R, Chavan SM. Hybrid Sea Lion Crow Search Algorithm-Based Stacked Autoencoder for Drug Sensitivity Prediction From Cancer Cell Lines. INTERNATIONAL JOURNAL OF SWARM INTELLIGENCE RESEARCH 2022. [DOI: 10.4018/ijsir.304723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Cancer is the most dreadful diseases across world and providing better therapy to cancer patients is still remains as a major challenging task due to drug resistance of tumor cells. This paper proposes a Sea Lion Crow Search Algorithm (SLCSA) for drug sensitivity prediction. The drug sensitivity from cultured cell lines is predicted using stacked autoencoder and proposed SLCSA is derived by combination of Sea Lion Optimization (SLnO) and Crow Search Algorithm (CSA).The implemented approach has offered superior results with maximum value of testing accuracy for normal are 0.920, leukemia is 0.920, NSCLC is 0.912, and urogenital is 0.914.
Collapse
|
8
|
Meybodi FY, Eslahchi C. Predicting Anti-Cancer Drug Response by Finding Optimal Subset of Drugs. Bioinformatics 2021; 37:4509-4516. [PMID: 34170297 DOI: 10.1093/bioinformatics/btab466] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 05/26/2021] [Accepted: 06/22/2021] [Indexed: 11/14/2022] Open
Abstract
MOTIVATION One of the most difficult challenges in precision medicine is determining the best treatment strategy for each patient based on personal information. Since drug response prediction in vitro is extremely expensive, time-consuming, and virtually impossible, and because there are so many cell lines and drug data, computational methods are needed. RESULTS MinDrug is a method for predicting anti-cancer drug response which try to identify the best subset of drugs that are the most similar to other drugs. MinDrug predicts the anti-cancer drug response on a new cell line using information from drugs in this subset and their connections to other drugs. MinDrug employs a heuristic star algorithm to identify an optimal subset of drugs and a regression technique known as Elastic-Net approaches to predict anti-cancer drug response in a new cell line. To test MinDrug, we use both statistical and biological methods to assess the selected drugs. MinDrug is also compared to four state-of-the-art approaches using various k-fold cross-validations on two large public datasets: GDSC and CCLE. MinDrug outperforms the other approaches in terms of precision, robustness, and speed. Furthermore, we compare the evaluation results of all the approaches with an external dataset with a statistical distribution that is not exactly the same as the training data. The results show that MinDrug continues to outperform the other approaches. AVAILABILITY MinDrug's source code can be found at https://github.com/yassaee/MinDrug. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Fatemeh Yassaee Meybodi
- Department of Computer and Data Sciences, Faculty of Mathematical Sciences, Shahid Beheshti University, Tehran, Iran
| | - Changiz Eslahchi
- Department of Computer and Data Sciences, Faculty of Mathematical Sciences, Shahid Beheshti University, Tehran, Iran.,School of Biological Sciences, Institute for Research in Fundamental Sciences (IPM), Tehran, Iran
| |
Collapse
|