1
|
Lima GM, Jame-Chenarboo Z, Sojitra M, Sarkar S, Carpenter EJ, Yang CY, Schmidt E, Lai J, Atrazhev A, Yazdan D, Peng C, Volker EA, Ho R, Monteiro G, Lai R, Mahal LK, Macauley MS, Derda R. The liquid lectin array detects compositional glycocalyx differences using multivalent DNA-encoded lectins on phage. Cell Chem Biol 2024; 31:1986-2001.e9. [PMID: 39454580 DOI: 10.1016/j.chembiol.2024.09.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 07/05/2024] [Accepted: 09/26/2024] [Indexed: 10/28/2024]
Abstract
Selective detection of disease-associated changes in the glycocalyx is an emerging field in modern targeted therapies. Detecting minor glycan changes on the cell surface is a challenge exacerbated by the lack of correspondence between cellular DNA/RNA and glycan structures. We demonstrate that multivalent displays of lectins on DNA-barcoded phages-liquid lectin array (LiLA)-detect subtle differences in density of glycans on cells. LiLA constructs displaying 73 copies of diCBM40 (CBM) lectin per virion (φ-CBM73) exhibit non-linear ON/OFF-like recognition of sialoglycans on the surface of normal and cancer cells. A high-valency φ-CBM290 display, or soluble CBM protein, cannot amplify the subtle differences detected by φ-CBM73. Similarly, multivalent displays of CBM and Siglec-7 detect differences in the glycocalyx between stem-like and non-stem populations in cancer. Multivalent display of lectins offer in situ detection of minor differences in glycocalyx in cells both in vitro and in vivo not feasible to currently available technologies.
Collapse
Affiliation(s)
- Guilherme M Lima
- Department of Chemistry, University of Alberta, Edmonton, AB T6G 2G2, Canada
| | | | - Mirat Sojitra
- Department of Chemistry, Stanford University, Stanford, CA 94305, USA
| | - Susmita Sarkar
- Department of Chemistry, University of Alberta, Edmonton, AB T6G 2G2, Canada
| | - Eric J Carpenter
- Department of Chemistry, University of Alberta, Edmonton, AB T6G 2G2, Canada
| | - Claire Y Yang
- Department of Chemistry, University of Alberta, Edmonton, AB T6G 2G2, Canada
| | - Edward Schmidt
- Department of Chemistry, University of Alberta, Edmonton, AB T6G 2G2, Canada
| | - Justine Lai
- Department of Medicine, University of Alberta, Edmonton, AB T6G 1C9, Canada
| | - Alexey Atrazhev
- Department of Chemistry, University of Alberta, Edmonton, AB T6G 2G2, Canada
| | - Danial Yazdan
- Department of Chemistry, University of Alberta, Edmonton, AB T6G 2G2, Canada
| | - Chuanhao Peng
- Department of Chemistry, University of Alberta, Edmonton, AB T6G 2G2, Canada
| | - Elizabeth A Volker
- Department of Chemistry, University of Alberta, Edmonton, AB T6G 2G2, Canada
| | - Ray Ho
- Department of Chemistry, University of Alberta, Edmonton, AB T6G 2G2, Canada
| | - Gisele Monteiro
- Departamento de Tecnologia Bioquímico-Farmacêutica, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, São Paulo, SP 05508 000, Brazil
| | - Raymond Lai
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, AB T6G 1C9, Canada
| | - Lara K Mahal
- Department of Chemistry, University of Alberta, Edmonton, AB T6G 2G2, Canada
| | - Matthew S Macauley
- Department of Chemistry, University of Alberta, Edmonton, AB T6G 2G2, Canada; Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, AB T6G 2J7, Canada
| | - Ratmir Derda
- Department of Chemistry, University of Alberta, Edmonton, AB T6G 2G2, Canada.
| |
Collapse
|
2
|
Yang H, Lin Z, Wu B, Xu J, Tao SC, Zhou S. Deciphering disease through glycan codes: leveraging lectin microarrays for clinical insights. Acta Biochim Biophys Sin (Shanghai) 2024; 56:1145-1155. [PMID: 39099413 PMCID: PMC11399442 DOI: 10.3724/abbs.2024123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 06/12/2024] [Indexed: 08/06/2024] Open
Abstract
Glycosylation, a crucial posttranslational modification, plays a significant role in numerous physiological and pathological processes. Lectin microarrays, which leverage the high specificity of lectins for sugar binding, are ideally suited for profiling the glycan spectra of diverse and complex biological samples. In this review, we explore the evolution of lectin detection technologies, as well as the applications and challenges of lectin microarrays in analyzing the glycome profiles of various clinical samples, including serum, saliva, tissues, sperm, and urine. This review not only emphasizes significant advancements in the high-throughput analysis of polysaccharides but also provides insight into the potential of lectin microarrays for diagnosing and managing diseases such as tumors, autoimmune diseases, and chronic inflammation. We aim to provide a clear, concise, and comprehensive overview of the use of lectin microarrays in clinical settings, thereby assisting researchers in conducting clinical studies in glycobiology.
Collapse
Affiliation(s)
- Hangzhou Yang
- Department of General SurgeryShanghai Jiao Tong University Affiliated Sixth People’s HospitalShanghai200233China
| | - Zihan Lin
- Department of General SurgeryShanghai Jiao Tong University Affiliated Sixth People’s HospitalShanghai200233China
| | - Bo Wu
- Department of General SurgeryShanghai Jiao Tong University Affiliated Sixth People’s HospitalShanghai200233China
| | - Jun Xu
- Department of Orthopaedic SurgeryShanghai Jiao Tong University Affiliated Sixth People’s HospitalShanghai200233China
| | - Sheng-Ce Tao
- Shanghai Center for Systems BiomedicineKey Laboratory of Systems Biomedicine (Ministry of Education)Shanghai Jiao Tong University800 Dongchuan RoadShanghai200240China
| | - Shumin Zhou
- Institute of Microsurgery on ExtremitiesShanghai Jiaotong University Affiliated Sixth People’s HospitalShanghai200233China
| |
Collapse
|
3
|
Horimoto Y, Hlaing MT, Saeki H, Denda-Nagai K, Ishii-Schrade K, Fujihira H, Abe M, Noji M, Shichino S, Saito M, Irimura T. Glycosylation profiles of breast cancer cells may represent clonal variations of multiple organ metastases. Clin Exp Metastasis 2024; 41:267-270. [PMID: 38193930 DOI: 10.1007/s10585-023-10253-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 11/05/2023] [Indexed: 01/10/2024]
Abstract
Glycosylation changes of cancer cells are known to be associated with malignant progression and metastases and potentially determine the organ-selective nature of metastasis as theorized by Paget (Lancet 1:571-573, 1889). Cellular glycans play a variety of roles in the processes of metastasis and may be unique to the cells that metastasize to different organs. We analyzed the glycosylation profiles of the primary tumor and tumors metastasized to lymph node, liver, lung, brain, bone, thyroid, kidney, adrenal, small intestine and pancreas in an autopsy case of breast cancer employing a lectin microarray with 45 lectins. Clustering analysis of the data revealed that metastatic breast cancer cells were categorized into several clusters according to their glycosylation profiles. Our results provide a biological basis to understand differential phenotypes of metastatic breast cancer cells potentially reflecting clonal origin, which does not directly reflect genomic or genetic changes or microenvironmental effects but connects to glycosylation profiles.
Collapse
Affiliation(s)
- Yoshiya Horimoto
- Department of Breast Oncology, Juntendo University Graduate School of Medicine, Tokyo, Japan
- Department of Human Pathology, Juntendo University Graduate School of Medicine, Tokyo, Japan
- Department of Breast Oncology and Surgery, Tokyo Medical University, Tokyo, Japan
| | - May Thinzar Hlaing
- Department of Breast Oncology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Harumi Saeki
- Department of Human Pathology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Kaori Denda-Nagai
- Division of Glycobiologics, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan
| | - Katrin Ishii-Schrade
- Division of Glycobiologics, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan
| | - Haruhiko Fujihira
- Division of Glycobiologics, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan
- Glycometabolic Biochemistry Laboratory, Cluster for Pioneering Research, RIKEN, Wako, Japan
| | - Masaaki Abe
- Department of Pathology and Oncology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Miki Noji
- Division of Glycobiologics, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan
| | - Shigeyuki Shichino
- Division of Molecular Regulation of Inflammatory and Immune Diseases, Research Institute for Biomedical Sciences, Tokyo University of Science, Tokyo, Japan
| | - Mitsue Saito
- Department of Breast Oncology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Tatsuro Irimura
- Department of Breast Oncology, Juntendo University Graduate School of Medicine, Tokyo, Japan.
- Division of Glycobiologics, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan.
| |
Collapse
|
4
|
Chen G, Yang L, Liu G, Zhu Y, Yang F, Dong X, Xu F, Zhu F, Cao C, Zhong D, Li S, Zhang H, Li B. Research progress in protein microarrays: Focussing on cancer research. Proteomics Clin Appl 2023; 17:e2200036. [PMID: 36316278 DOI: 10.1002/prca.202200036] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 09/10/2022] [Accepted: 09/27/2022] [Indexed: 01/22/2023]
Abstract
Although several effective treatment modalities have been developed for cancers, the morbidity and mortality associated with cancer continues to increase every year. As one of the most exciting emerging technologies, protein microarrays represent a powerful tool in the field of cancer research because of their advantages such as high throughput, small sample usage, more flexibility, high sensitivity and direct readout of results. In this review, we focus on the research progress in four types of protein microarrays (proteome microarray, antibody microarray, lectin microarray and reversed protein array) with emphasis on their application in cancer research. Finally, we discuss the current challenges faced by protein microarrays and directions for future developments. We firmly believe that this novel systems biology research tool holds immense potential in cancer research and will become an irreplaceable tool in this field.
Collapse
Affiliation(s)
- Guang Chen
- Department of Genetics and Cell Biology, Basic Medical College, Qingdao University, Qingdao, China
| | - Lina Yang
- Department of Genetics and Cell Biology, Basic Medical College, Qingdao University, Qingdao, China
| | - Guoxiang Liu
- Department of Genetics and Cell Biology, Basic Medical College, Qingdao University, Qingdao, China
| | - Yunfan Zhu
- Department of Genetics and Cell Biology, Basic Medical College, Qingdao University, Qingdao, China
| | - Fanghao Yang
- Department of Genetics and Cell Biology, Basic Medical College, Qingdao University, Qingdao, China
| | - Xiaolei Dong
- Department of Genetics and Cell Biology, Basic Medical College, Qingdao University, Qingdao, China
| | - Fenghua Xu
- Department of Genetics and Cell Biology, Basic Medical College, Qingdao University, Qingdao, China
| | - Feng Zhu
- Department of Genetics and Cell Biology, Basic Medical College, Qingdao University, Qingdao, China
| | - Can Cao
- Department of Genetics and Cell Biology, Basic Medical College, Qingdao University, Qingdao, China
| | - Di Zhong
- Department of Genetics and Cell Biology, Basic Medical College, Qingdao University, Qingdao, China
| | - Shuang Li
- Department of Genetics and Cell Biology, Basic Medical College, Qingdao University, Qingdao, China
| | - Huhu Zhang
- Department of Genetics and Cell Biology, Basic Medical College, Qingdao University, Qingdao, China
| | - Bing Li
- Department of Genetics and Cell Biology, Basic Medical College, Qingdao University, Qingdao, China.,Department of Hematology, The Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
5
|
Tamoxifen-resistant breast cancer cells exhibit reactivity with Wisteria floribunda agglutinin. PLoS One 2022; 17:e0273513. [PMID: 36006984 PMCID: PMC9409572 DOI: 10.1371/journal.pone.0273513] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Accepted: 08/09/2022] [Indexed: 12/03/2022] Open
Abstract
Glycosylation is one of the most important post-translational modifications of cell surface proteins involved in the proliferation, metastasis and treatment resistance of cancer cells. However, little is known about the role of glycosylation as the mechanism of breast cancer cell resistance to endocrine therapy. Herein, we aimed to identify the glycan profiles of tamoxifen-resistant human breast cancer cells, and their potential as predictive biomarkers for endocrine therapy. We established tamoxifen-resistant cells from estrogen receptor-positive human breast cancer cell lines, and their membrane-associated proteins were subjected to lectin microarray analysis. To confirm differential lectin binding to cellular glycoproteins, we performed lectin blotting analyses after electrophoretic separation of the glycoproteins. Mass spectrometry of the tryptic peptides of the lectin-bound glycoproteins was further conducted to identify glycoproteins binding to the above lectins. Finally, expression of the glycans that were recognized by a lectin was investigated using clinical samples from patients who received tamoxifen treatment after curative surgery. Lectin microarray analysis revealed that the membrane fractions of tamoxifen-resistant breast cancer cells showed increased binding to Wisteria floribunda agglutinin (WFA) compared to tamoxifen-sensitive cells. Glycoproteins seemed to be responsible for the differential WFA binding and the results of mass spectrometry revealed several membrane glycoproteins, such as CD166 and integrin beta-1, as candidates contributing to increased WFA binding. In clinical samples, strong WFA staining was more frequently observed in patients who had developed distant metastasis during tamoxifen treatment compared with non-relapsed patients. Therefore, glycans recognized by WFA are potentially useful as predictive markers to identify the tamoxifen-resistant and relapse-prone subset of estrogen receptor-positive breast cancer patients.
Collapse
|
6
|
Bertok T, Pinkova Gajdosova V, Bertokova A, Svecova N, Kasak P, Tkac J. Breast cancer glycan biomarkers: their link to tumour cell metabolism and their perspectives in clinical practice. Expert Rev Proteomics 2021; 18:881-910. [PMID: 34711108 DOI: 10.1080/14789450.2021.1996231] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
INTRODUCTION Breast cancer (BCa) is the most common cancer type diagnosed in women and 5th most common cause of deaths among all cancer deaths despite the fact that screening program is at place. This is why novel diagnostics approaches are needed in order to decrease number of BCa cases and disease mortality. AREAS COVERED In this review paper, we aim to cover some basic aspects regarding cellular metabolism and signalling in BCa behind altered glycosylation. We also discuss novel exciting discoveries regarding glycan-based analysis, which can provide useful information for better understanding of the disease. The final part deals with clinical usefulness of glycan-based biomarkers and the clinical performance of such biomarkers is compared to already approved BCa biomarkers and diagnostic tools based on imaging. EXPERT OPINION Recent discoveries suggest that glycan-based biomarkers offer high accuracy for possible BCa diagnostics in blood, but also for better monitoring and management of BCa patients. The review article was written using Web of Science search engine to include articles published between 2019 and 2021.
Collapse
Affiliation(s)
- Tomas Bertok
- Glycanostics Ltd., Bratislava, Slovak Republic.,Department of Glycobiotechnology, Institute of Chemistry, Slovak Academy of Sciences, Bratislava, Slovak Republic
| | - Veronika Pinkova Gajdosova
- Department of Glycobiotechnology, Institute of Chemistry, Slovak Academy of Sciences, Bratislava, Slovak Republic
| | | | - Natalia Svecova
- Department of Glycobiotechnology, Institute of Chemistry, Slovak Academy of Sciences, Bratislava, Slovak Republic
| | - Peter Kasak
- Center for Advanced Materials, Qatar University, Doha, Qatar
| | - Jan Tkac
- Glycanostics Ltd., Bratislava, Slovak Republic.,Department of Glycobiotechnology, Institute of Chemistry, Slovak Academy of Sciences, Bratislava, Slovak Republic
| |
Collapse
|