1
|
Sánchez-Díez M, Romero-Jiménez P, Alegría-Aravena N, Gavira-O’Neill CE, Vicente-García E, Quiroz-Troncoso J, González-Martos R, Ramírez-Castillejo C, Pastor JM. Assessment of Cell Viability in Drug Therapy: IC50 and Other New Time-Independent Indices for Evaluating Chemotherapy Efficacy. Pharmaceutics 2025; 17:247. [PMID: 40006615 PMCID: PMC11859577 DOI: 10.3390/pharmaceutics17020247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Revised: 02/10/2025] [Accepted: 02/11/2025] [Indexed: 02/27/2025] Open
Abstract
Background/Objectives: Cell viability assays play a crucial role in cancer research and the development of effective treatments. Evaluating the efficacy of conventional treatments across different tumor profiles is essential for understanding patient resistance to chemotherapy and relapse. The IC50 index has been commonly used as a guide in these assays. The idea behind the IC50 index is to compare cell proliferation under treatment with respect to a control population exposed to the same treatment. The index requires normalization to a control and is time dependent. These aspects are disadvantages, as small variations yield different results. In this article, we propose a new method to analyze cell viability assays. Methods: This method involves calculating the effective growth rate for both control (untreated) cells and cells exposed to a range of drug doses for short times, during which exponential proliferation can be assumed. The concentration dependence of the effective growth rate gives a real estimate of the treatment on cell proliferation. A curve fit of the effective growth rate related to concentration yields the concentration corresponding to a given effective growth rate. Results: We use this estimation to calculate the IC50 index and introduce two new parameters (ICr0 and ICrmed) to compare treatment efficacy under different culture conditions or cell lines. Conclusions: In summary, this study presents a new method to analyze cell viability assays and introduces two more precise parameters, improving the comparison and evaluation of efficacy under different conditions.
Collapse
Affiliation(s)
- Marta Sánchez-Díez
- CTB (CTB-UPM) Centro de Tecnología Biomédica, Universidad Politécnica de Madrid, 28223 Pozuelo de Alarcón, Spain; (P.R.-J.); (C.E.G.-O.); (E.V.-G.); (J.Q.-T.); (R.G.-M.)
- Grupo de Sistemas Complejos, Universidad Politécnica de Madrid, 28040 Madrid, Spain;
| | - Paula Romero-Jiménez
- CTB (CTB-UPM) Centro de Tecnología Biomédica, Universidad Politécnica de Madrid, 28223 Pozuelo de Alarcón, Spain; (P.R.-J.); (C.E.G.-O.); (E.V.-G.); (J.Q.-T.); (R.G.-M.)
| | - Nicolás Alegría-Aravena
- Instituto de Desarrollo Regional (IDR) and Instituto de Investigación en Recursos Cinegéticos (IREC), Universidad de Castilla-La Mancha (UCLM), 02071 Albacete, Spain;
- Asociación Española Contra el Cáncer (AECC)-Fundación Científica AECC, 02004 Albacete, Spain
| | - Clara E. Gavira-O’Neill
- CTB (CTB-UPM) Centro de Tecnología Biomédica, Universidad Politécnica de Madrid, 28223 Pozuelo de Alarcón, Spain; (P.R.-J.); (C.E.G.-O.); (E.V.-G.); (J.Q.-T.); (R.G.-M.)
- Grupo de Sistemas Complejos, Universidad Politécnica de Madrid, 28040 Madrid, Spain;
- Nageru S.L., 28045 Madrid, Spain
| | - Elena Vicente-García
- CTB (CTB-UPM) Centro de Tecnología Biomédica, Universidad Politécnica de Madrid, 28223 Pozuelo de Alarcón, Spain; (P.R.-J.); (C.E.G.-O.); (E.V.-G.); (J.Q.-T.); (R.G.-M.)
| | - Josefa Quiroz-Troncoso
- CTB (CTB-UPM) Centro de Tecnología Biomédica, Universidad Politécnica de Madrid, 28223 Pozuelo de Alarcón, Spain; (P.R.-J.); (C.E.G.-O.); (E.V.-G.); (J.Q.-T.); (R.G.-M.)
| | - Raquel González-Martos
- CTB (CTB-UPM) Centro de Tecnología Biomédica, Universidad Politécnica de Madrid, 28223 Pozuelo de Alarcón, Spain; (P.R.-J.); (C.E.G.-O.); (E.V.-G.); (J.Q.-T.); (R.G.-M.)
- Grupo de Sistemas Complejos, Universidad Politécnica de Madrid, 28040 Madrid, Spain;
- Nageru S.L., 28045 Madrid, Spain
| | - Carmen Ramírez-Castillejo
- CTB (CTB-UPM) Centro de Tecnología Biomédica, Universidad Politécnica de Madrid, 28223 Pozuelo de Alarcón, Spain; (P.R.-J.); (C.E.G.-O.); (E.V.-G.); (J.Q.-T.); (R.G.-M.)
- Grupo de Sistemas Complejos, Universidad Politécnica de Madrid, 28040 Madrid, Spain;
- Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Departamento Biotecnología-Biología Vegetal, Universidad Politécnica de Madrid, 28040 Madrid, Spain
- Departamento de Oncología, Instituto de Investigación Sanitaria San Carlos (IdISSC), 28040 Madrid, Spain
| | - Juan Manuel Pastor
- Grupo de Sistemas Complejos, Universidad Politécnica de Madrid, 28040 Madrid, Spain;
- Grupo Interdisciplinar de Sistemas Complejos (GISC), 28040 Madrid, Spain
| |
Collapse
|
2
|
Ferreira Azevedo L, de Souza Rocha CC, Souza MCO, Machado ART, Devóz PP, Rocha BA, Antunes LMG, Uribe-Romo FJ, Campiglia AD, Barbosa F. High molecular weight polycyclic aromatic hydrocarbon (HMW-PAH) isomers: unveiling distinct toxic effects from cytotoxicity to oxidative stress-induced DNA damage. Arch Toxicol 2025; 99:679-687. [PMID: 39611947 DOI: 10.1007/s00204-024-03917-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 11/20/2024] [Indexed: 11/30/2024]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) represent one of the most extensive classes of known carcinogenic and genotoxic compounds widely distributed across the globe. Particularly relevant to ecotoxicological studies is the possible presence of PAHs with molecular weight (MW) 302 Da. Since the toxicity of 302 Da PAHs differs significantly from isomer to isomer, understanding their relative toxicity is essential for assessing their potential risks to human health. This study investigates the toxic effects of micromolar concentrations of four HMW-PAHs isomers of MW = 302 Da, namely dibenzo(b,l)fluoranthene (DB(b,l)F), dibenzo(a,j)fluoranthene (DB(a,j)F), dibenzo(a,l)fluoranthene (DB(a,l)F) and naphtho(1-2j)fluoranthene (N(1-2j)F), upon exposure and metabolic activation in HepG2 cells. Appropriate assays were selected to investigate their potential to disrupt cellular viability and to induce cytotoxicity, apoptosis/necrosis, genotoxicity, and oxidative stress with DNA damage. After 48 h of exposure time, DB(a,l)F was the only isomer to reduce cellular viability in a concentration-dependent manner. In all cases, apoptosis was the main mechanism of HepG2 cell death, which could be induced by the significant DNA damage and an increase in 8-hydroxy-2'-deoxyguanosine (8-OHdG) adduct level formation. The highest concentrations of DB(a,l)F tested exhibited the greatest potential to induce HepG2 DNA damage and 8-OHdG formation. Altogether, these facts demonstrate that the distinct arrangements of the atoms in HMW-PAHs isomers can impact on their toxic potential and that DB(a,l)F was the most toxic isomer evaluated in this study. These results shed light on the importance to thoroughly characterize MW302 PAHs to substantiate their human and environmental risk assessments.
Collapse
Affiliation(s)
- Lara Ferreira Azevedo
- School of Pharmaceutical Sciences of Ribeirao Preto, Department of Clinical Analyses, Toxicology, and Food Sciences, University of Sao Paulo, Av. Do Café S/nº, Ribeirao Preto, Sao Paulo, 14040-903, Brazil
| | - Cecilia Cristina de Souza Rocha
- School of Pharmaceutical Sciences of Ribeirao Preto, Department of Clinical Analyses, Toxicology, and Food Sciences, University of Sao Paulo, Av. Do Café S/nº, Ribeirao Preto, Sao Paulo, 14040-903, Brazil
| | - Marília Cristina Oliveira Souza
- School of Pharmaceutical Sciences of Ribeirao Preto, Department of Biomolecular Sciences, University of Sao Paulo, Av. do Café S/nº, Ribeirao Preto, Sao Paulo, 14040-903, Brazil
| | - Ana Rita Thomazela Machado
- School of Pharmaceutical Sciences of Ribeirao Preto, Department of Clinical Analyses, Toxicology, and Food Sciences, University of Sao Paulo, Av. Do Café S/nº, Ribeirao Preto, Sao Paulo, 14040-903, Brazil
| | - Paula Pícoli Devóz
- School of Pharmaceutical Sciences of Ribeirao Preto, Department of Clinical Analyses, Toxicology, and Food Sciences, University of Sao Paulo, Av. Do Café S/nº, Ribeirao Preto, Sao Paulo, 14040-903, Brazil
| | - Bruno Alves Rocha
- School of Pharmaceutical Sciences of Ribeirao Preto, Department of Clinical Analyses, Toxicology, and Food Sciences, University of Sao Paulo, Av. Do Café S/nº, Ribeirao Preto, Sao Paulo, 14040-903, Brazil
- Institute of Chemistry, Federal University of Alfenas, Alfenas, MG, 37130-001, Brazil
| | - Lusania Maria Greggi Antunes
- School of Pharmaceutical Sciences of Ribeirao Preto, Department of Clinical Analyses, Toxicology, and Food Sciences, University of Sao Paulo, Av. Do Café S/nº, Ribeirao Preto, Sao Paulo, 14040-903, Brazil
| | | | - Andres D Campiglia
- Department of Chemistry, University of Central Florida, Orlando, FL, 32816, USA.
| | - Fernando Barbosa
- School of Pharmaceutical Sciences of Ribeirao Preto, Department of Clinical Analyses, Toxicology, and Food Sciences, University of Sao Paulo, Av. Do Café S/nº, Ribeirao Preto, Sao Paulo, 14040-903, Brazil.
| |
Collapse
|
3
|
Pierce L, Anderson H, Sarkar S, Bauer SR, Sarkar S. Experimental and computational approach to establish fit-for-purpose cell viability assays. Regen Med 2024; 19:27-45. [PMID: 38247346 DOI: 10.2217/rme-2023-0154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2024] Open
Abstract
Aim: Cell viability assays are critical for cell-based products. Here, we demonstrate a combined experimental and computational approach to identify fit-for-purpose cell assays that can predict changes in cell proliferation, a critical biological response in cell expansion. Materials & methods: Jurkat cells were systematically injured using heat (45 ± 1°C). Cell viability was measured at 0 h and 24 h after treatment using assays for membrane integrity, metabolic function and apoptosis. Proliferation kinetics for longer term cultures were modeled using the Gompertz distribution to establish predictive models between cell viability results and proliferation. Results & conclusion: We demonstrate an approach for ranking these assays as predictors of cell proliferation and for setting cell viability specifications when a particular proliferation response is required.
Collapse
Affiliation(s)
- Laura Pierce
- Biosystems & Biomaterials Division, National Institute of Standards & Technology, Gaithersburg, MD 20899, USA
| | - Hidayah Anderson
- Division of Cellular & Gene Therapies, CBER, FDA, Silver Spring, MD 20993, USA
| | - Swarnavo Sarkar
- Biosystems & Biomaterials Division, National Institute of Standards & Technology, Gaithersburg, MD 20899, USA
| | - Steven R Bauer
- Division of Cellular & Gene Therapies, CBER, FDA, Silver Spring, MD 20993, USA
| | - Sumona Sarkar
- Biosystems & Biomaterials Division, National Institute of Standards & Technology, Gaithersburg, MD 20899, USA
| |
Collapse
|
4
|
Carranza-Rosales P, Valencia-Mercado D, Esquivel-Hernández O, González-Geroniz MI, Bañuelos-García JI, Castruita-Ávila AL, Sánchez-Prieto MA, Viveros-Valdez E, Morán-Martínez J, Balderas-Rentería I, Guzmán-Delgado NE, Carranza-Torres IE. Breast Cancer Tissue Explants: An Approach to Develop Personalized Therapy in Public Health Services. J Pers Med 2023; 13:1521. [PMID: 37888132 PMCID: PMC10608341 DOI: 10.3390/jpm13101521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 10/18/2023] [Accepted: 10/21/2023] [Indexed: 10/28/2023] Open
Abstract
Breast cancer is one of the main causes of death worldwide. Lately, there is great interest in developing methods that assess individual sensitivity and/or resistance of tumors to antineoplastics to provide personalized therapy for patients. In this study we used organotypic culture of human breast tumor slices to predict the experimental effect of antineoplastics on the viability of tumoral tissue. Samples of breast tumor were taken from 27 patients with clinically advanced breast cancer; slices were obtained and incubated separately for 48 h with paclitaxel, docetaxel, epirubicin, 5-fluorouracil, cyclophosphamide, and cell culture media (control). We determined an experimental tumor sensitivity/resistance (S/R) profile by evaluating tissue viability using the Alamar Blue® metabolic test, and by structural viability (histopathological analyses, necrosis, and inflammation). These parameters were related to immunohistochemical expression of the estrogen receptor, progesterone receptor, and human epidermal growth factor receptor 2. The predominant histological type found was infiltrating ductal carcinoma (85.2%), followed by lobular carcinoma (7.4%) and mixed carcinoma (7.4%). Experimental drug resistance was related to positive hormone receptor status in 83% of samples treated with cyclophosphamide (p = 0.027). Results suggest that the tumor S/R profile can help to predict personalized therapy or optimize chemotherapeutic treatments in breast cancer.
Collapse
Affiliation(s)
- Pilar Carranza-Rosales
- Centro de Investigación Biomédica del Noreste, Instituto Mexicano del Seguro Social, Calle Jesús Dionisio González # 501, Col. Independencia, Monterrey 64720, NL, Mexico;
| | - Daniel Valencia-Mercado
- Unidad Médica de Alta Especialidad, Hospital de Ginecología y Obstetricia No. 23, Instituto Mexicano del Seguro Social, Avenida Constitución y Félix U, Gómez s/n, Colonia Centro, Monterrey 64000, NL, Mexico; (D.V.-M.); (O.E.-H.); (M.I.G.-G.); (J.I.B.-G.)
| | - Olga Esquivel-Hernández
- Unidad Médica de Alta Especialidad, Hospital de Ginecología y Obstetricia No. 23, Instituto Mexicano del Seguro Social, Avenida Constitución y Félix U, Gómez s/n, Colonia Centro, Monterrey 64000, NL, Mexico; (D.V.-M.); (O.E.-H.); (M.I.G.-G.); (J.I.B.-G.)
| | - Manuel Ismael González-Geroniz
- Unidad Médica de Alta Especialidad, Hospital de Ginecología y Obstetricia No. 23, Instituto Mexicano del Seguro Social, Avenida Constitución y Félix U, Gómez s/n, Colonia Centro, Monterrey 64000, NL, Mexico; (D.V.-M.); (O.E.-H.); (M.I.G.-G.); (J.I.B.-G.)
| | - José Inocente Bañuelos-García
- Unidad Médica de Alta Especialidad, Hospital de Ginecología y Obstetricia No. 23, Instituto Mexicano del Seguro Social, Avenida Constitución y Félix U, Gómez s/n, Colonia Centro, Monterrey 64000, NL, Mexico; (D.V.-M.); (O.E.-H.); (M.I.G.-G.); (J.I.B.-G.)
| | - Ana Lilia Castruita-Ávila
- Unidad Médica de Alta Especialidad, Hospital de Especialidades No. 25, Instituto Mexicano del Seguro Social, Av Fidel Velázquez s/n, Mitras Nte., Monterrey 64180, NL, Mexico; (A.L.C.-Á.); (M.A.S.-P.)
| | - Mario Alberto Sánchez-Prieto
- Unidad Médica de Alta Especialidad, Hospital de Especialidades No. 25, Instituto Mexicano del Seguro Social, Av Fidel Velázquez s/n, Mitras Nte., Monterrey 64180, NL, Mexico; (A.L.C.-Á.); (M.A.S.-P.)
| | - Ezequiel Viveros-Valdez
- Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, Av. Pedro de Alba s/n, San Nicolás de los Garza 66450, NL, Mexico;
| | - Javier Morán-Martínez
- Departamento de Biología Celular y Ultraestructura, Facultad de Medicina, Universidad Autónoma de Coahuila, Av. Morelos 900-Oriente, Primera de Cobián Centro, Torreón 27000, CH, Mexico;
| | - Isaías Balderas-Rentería
- Facultad de Ciencias Químicas, Universidad Autónoma de Nuevo León, Av. Pedro de Alba s/n, San Nicolás de los Garza 66450, NL, Mexico;
| | - Nancy Elena Guzmán-Delgado
- Unidad Médica de Alta Especialidad, Hospital de Cardiología No. 34, Instituto Mexicano del Seguro Social, Av. Lincoln S/N, Col. Valle Verde 2do. Sector, Monterrey 64360, NL, Mexico
| | - Irma Edith Carranza-Torres
- Centro de Investigación Biomédica del Noreste, Instituto Mexicano del Seguro Social, Calle Jesús Dionisio González # 501, Col. Independencia, Monterrey 64720, NL, Mexico;
- Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, Av. Pedro de Alba s/n, San Nicolás de los Garza 66450, NL, Mexico;
| |
Collapse
|
5
|
Fontaine M, Bartolami E, Prono M, Béal D, Blosi M, Costa AL, Ravagli C, Baldi G, Sprio S, Tampieri A, Fenoglio I, Tran L, Fadeel B, Carriere M. Nanomaterial genotoxicity evaluation using the high-throughput p53-binding protein 1 (53BP1) assay. PLoS One 2023; 18:e0288737. [PMID: 37713377 PMCID: PMC10503773 DOI: 10.1371/journal.pone.0288737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 07/04/2023] [Indexed: 09/17/2023] Open
Abstract
Toxicity evaluation of engineered nanomaterials is challenging due to the ever increasing number of materials and because nanomaterials (NMs) frequently interfere with commonly used assays. Hence, there is a need for robust, high-throughput assays with which to assess their hazard potential. The present study aimed at evaluating the applicability of a genotoxicity assay based on the immunostaining and foci counting of the DNA repair protein 53BP1 (p53-binding protein 1), in a high-throughput format, for NM genotoxicity assessment. For benchmarking purposes, we first applied the assay to a set of eight known genotoxic agents, as well as X-ray irradiation (1 Gy). Then, a panel of NMs and nanobiomaterials (NBMs) was evaluated with respect to their impact on cell viability and genotoxicity, and to their potential to induce reactive oxygen species (ROS) production. The genotoxicity recorded using the 53BP1 assay was confirmed using the micronucleus assay, also scored via automated (high-throughput) microscopy. The 53BP1 assay successfully identified genotoxic compounds on the HCT116 human intestinal cell line. None of the tested NMs showed any genotoxicity using the 53BP1 assay, except the positive control consisting in (CoO)(NiO) NMs, while only TiO2 NMs showed positive outcome in the micronucleus assay. Only Fe3O4 NMs caused significant elevation of ROS, not correlated to DNA damage. Therefore, owing to its adequate predictivity of the genotoxicity of most of the tested benchmark substance and its ease of implementation in a high throughput format, the 53BP1 assay could be proposed as a complementary high-throughput screening genotoxicity assay, in the context of the development of New Approach Methodologies.
Collapse
Affiliation(s)
- Maelle Fontaine
- CEA, CNRS, IRIG, SyMMES-CIBEST, Univ. Grenoble Alpes, Grenoble, France
| | - Eline Bartolami
- CEA, CNRS, IRIG, SyMMES-CIBEST, Univ. Grenoble Alpes, Grenoble, France
| | - Marion Prono
- CEA, CNRS, IRIG, SyMMES-CIBEST, Univ. Grenoble Alpes, Grenoble, France
| | - David Béal
- CEA, CNRS, IRIG, SyMMES-CIBEST, Univ. Grenoble Alpes, Grenoble, France
| | - Magda Blosi
- National Research Council, Institute of Science, Technology and Sustainability for Ceramic Materials ISSMC-CNR (Former ISTEC-CNR), Faenza, Italy
| | - Anna L. Costa
- National Research Council, Institute of Science, Technology and Sustainability for Ceramic Materials ISSMC-CNR (Former ISTEC-CNR), Faenza, Italy
| | - Costanza Ravagli
- Ce.Ri.Col, Colorobbia Consulting S.R.L, Sovigliana-Vinci, Firenze, Italy
| | - Giovanni Baldi
- Ce.Ri.Col, Colorobbia Consulting S.R.L, Sovigliana-Vinci, Firenze, Italy
| | - Simone Sprio
- National Research Council, Institute of Science, Technology and Sustainability for Ceramic Materials ISSMC-CNR (Former ISTEC-CNR), Faenza, Italy
| | - Anna Tampieri
- National Research Council, Institute of Science, Technology and Sustainability for Ceramic Materials ISSMC-CNR (Former ISTEC-CNR), Faenza, Italy
| | - Ivana Fenoglio
- Department of Chemistry, University of Turin, Turin, Italy
| | - Lang Tran
- Institute of Occupational Medicine, Edinburgh, Midlothian, United Kingdom
| | - Bengt Fadeel
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Marie Carriere
- CEA, CNRS, IRIG, SyMMES-CIBEST, Univ. Grenoble Alpes, Grenoble, France
| |
Collapse
|
6
|
Mitchell J, Lo KWH. The Use of Small-Molecule Compounds for Cell Adhesion and Migration in Regenerative Medicine. Biomedicines 2023; 11:2507. [PMID: 37760948 PMCID: PMC10525671 DOI: 10.3390/biomedicines11092507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 08/22/2023] [Accepted: 09/01/2023] [Indexed: 09/29/2023] Open
Abstract
Cell adhesion is essential for cell survival, communication, and regulation, and it is of fundamental importance in the development and maintenance of tissues. Cell adhesion has been widely explored due to its many important roles in the fields of tissue regenerative engineering and cell biology. This is because the mechanical interactions between a cell and its extracellular matrix (ECM) can influence and control cell behavior and function. Currently, biomaterials for regenerative medicine have been heavily investigated as substrates for promoting a cells' adhesive properties and subsequent proliferation, tissue differentiation, and maturation. Specifically, the manipulation of biomaterial surfaces using ECM coatings such as fibronectin extracted from animal-derived ECM have contributed significantly to tissue regenerative engineering as well as basic cell biology research. Additionally, synthetic and natural bioadhesive agents with pronounced abilities to enhance adhesion in numerous biological components and molecules have also been assessed in the field of tissue regeneration. Research into the use of facilitative bioadhesives has aimed to further optimize the biocompatibility, biodegradability, toxicity levels, and crosslinking duration of bioadhesive materials for improved targeted delivery and tissue repair. However, the restrictive drawbacks of some of these bioadhesive and animal-derived materials include the potential risk of disease transmission, immunogenicity, poor reproducibility, impurities, and instability. Therefore, it is necessary for alternative strategies to be sought out to improve the quality of cell adhesion to biomaterials. One promising strategy involves the use of cell-adhesive small molecules. Small molecules are relatively inexpensive, stable, and low-molecular-weight (<1000 Da) compounds with great potential to serve as efficient alternatives to conventional bioadhesives, ECM proteins, and other derived peptides. Over the past few years, a number of cell adhesive small molecules with the potential for tissue regeneration have been reported. In this review, we discuss the current progress using cell adhesive small molecules to regulate tissue regeneration.
Collapse
Affiliation(s)
- Juan Mitchell
- School of Dental Medicine, University of Connecticut Health Center, Farmington, CT 06030, USA;
| | - Kevin W.-H. Lo
- Connecticut Convergence Institute for Translation in Regenerative Engineering, School of Medicine, University of Connecticut Health Center, Farmington, CT 06030, USA
- Department of Medicine, Division of Endocrinology, School of Medicine, University of Connecticut Health Center, Farmington, CT 06030, USA
- Department of Biomedical Engineering, School of Engineering, University of Connecticut, Storrs, CT 06268, USA
- Institute of Materials Science (IMS), School of Engineering, University of Connecticut, Storrs, CT 06269, USA
| |
Collapse
|
7
|
Kamaruzaman N, Fauzi MB, Tabata Y, Yusop SM. Functionalised Hybrid Collagen-Elastin for Acellular Cutaneous Substitute Applications. Polymers (Basel) 2023; 15:polym15081929. [PMID: 37112076 PMCID: PMC10143773 DOI: 10.3390/polym15081929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 04/10/2023] [Accepted: 04/14/2023] [Indexed: 04/29/2023] Open
Abstract
Wound contracture, which commonly happens after wound healing, may lead to physical distortion, including skin constriction. Therefore, the combination of collagen and elastin as the most abundant extracellular matrix (ECM) skin matrices may provide the best candidate biomaterials for cutaneous wound injury. This study aimed to develop a hybrid scaffold containing green natural resources (ovine tendon collagen type-I and poultry-based elastin) for skin tissue engineering. Briefly, freeze-drying was used to create the hybrid scaffolds, which were then crosslinked with 0.1% (w/v) genipin (GNP). Next, the physical characteristics (pore size, porosity, swelling ratio, biodegradability and mechanical strength) of the microstructure were assessed. Energy dispersive X-ray spectroscopy (EDX) and Fourier transform infrared (FTIR) spectrophotometry were used for the chemical analysis. The findings showed a uniform and interconnected porous structure with acceptable porosity (>60%) and high-water uptake capacity (>1200%), with pore sizes ranging between 127 ± 22 and 245 ± 35 µm. The biodegradation rate of the fabricated scaffold containing 5% elastin was lower (<0.043 mg/h) compared to the control scaffold (collagen only; 0.085 mg/h). Further analysis with EDX identified the main elements of the scaffold: it contained carbon (C) 59.06 ± 1.36-70.66 ± 2.89%, nitrogen (N) 6.02 ± 0.20-7.09 ± 0.69% and oxygen (O) 23.79 ± 0.65-32.93 ± 0.98%. FTIR analysis revealed that collagen and elastin remained in the scaffold and exhibited similar functional amides (amide A: 3316 cm-1, amide B: 2932 cm-1, amide I: 1649 cm-1, amide II: 1549 cm-1 and amide III: 1233 cm-1). The combination of elastin and collagen also produced a positive effect via increased Young's modulus values. No toxic effect was identified, and the hybrid scaffolds significantly supported human skin cell attachment and viability. In conclusion, the fabricated hybrid scaffolds demonstrated optimum physicochemical and mechanical properties and may potentially be used as an acellular skin substitute in wound management.
Collapse
Affiliation(s)
- Nurkhuzaiah Kamaruzaman
- Department of Food Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia
| | - Mh Busra Fauzi
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Selangor, Malaysia
| | - Yasuhiko Tabata
- Laboratory of Biomaterials, Department of Regeneration Science and Engineering, Institute for Life and Medical Sciences (LiMe), Kyoto University, 53 Kawara-cho Shogoin, Sakyo-Ku, Kyoto 606-8507, Japan
| | - Salma Mohamad Yusop
- Department of Food Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia
| |
Collapse
|
8
|
Lomphithak T, Fadeel B. Die hard: cell death mechanisms and their implications in nanotoxicology. Toxicol Sci 2023; 192:kfad008. [PMID: 36752525 PMCID: PMC10109533 DOI: 10.1093/toxsci/kfad008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023] Open
Abstract
Cell death is a fundamental biological process, and its fine-tuned regulation is required for life. However, the complexity of regulated cell death is often reduced to a matter of live-dead discrimination. Here, we provide a perspective on programmed or regulated cell death, focusing on apoptosis, pyroptosis, necroptosis, and ferroptosis (the latter three cell death modalities are examples of regulated necrosis). We also touch on other, recently described manifestations of (pathological) cell death including cuproptosis. Furthermore, we address how engineered nanomaterials impact on regulated cell death. We posit that an improved understanding of nanomaterial-induced perturbations of cell death may allow for a better prediction of the consequences of human exposure and could also yield novel approaches by which to mitigate these effects. Finally, we provide examples of the harnessing of nanomaterials to achieve cancer cell killing through the induction of regulated cell death.
Collapse
Affiliation(s)
- Thanpisit Lomphithak
- Division of Molecular Toxicology, Institute of Environmental Medicine, Karolinska Institutet, 171 77 Stockholm, Sweden
- Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, Thailand
| | - Bengt Fadeel
- Division of Molecular Toxicology, Institute of Environmental Medicine, Karolinska Institutet, 171 77 Stockholm, Sweden
| |
Collapse
|