1
|
Liu C, Wang X, Parris C, Pang Q, Naeem MU, Wang L. Macula Densa Nitric Oxide Synthase 1 Controls Renin Release and Renin-Dependent Blood Pressure Changes. DISCOVERY MEDICINE 2023; 35:525-532. [PMID: 37553306 PMCID: PMC10921921 DOI: 10.24976/discov.med.202335177.53] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/10/2023]
Abstract
BACKGROUND The function of macula densa nitric oxide synthase 1 (NOS1) in the regulation of renin release is controversial. This study was conducted to further elucidate the role of macula densa NOS1 in renin release and blood pressure regulation in response to salt challenges and hemorrhagic shock. METHODS To investigate the specific role of NOS1 in the macula densa within the kidney in response to varying sodium concentrations in the diet, tissue macula densa-specific NOS1 knockout (MD-NOS1KO) and wild type (WT) mice were subjected to sequential low (0.1% NaCl) and high (1.4% NaCl) sodium diets. Separate groups of mice, consisting of both MD-NOS1KO subgroup and WT subgroup, were induced hemorrhagic shock by retro-orbital bleeding of 12 mL blood/kg body weight. Mean arterial pressure (MAP) was measured by a radio-telemetry system. Plasma renin concentration (PRC) was measured with the radioimmunoassay for both sodium diet and hemorrhagic shock experiments. RESULTS PRCs were 371 ± 95 and 411 ± 68 ng/mL/hr in WT and MD-NOS1KO mice fed a normal sodium diet, respectively. Low salt intake stimulated an increase in the renin release by about 260% in WT mice (PRC = 1364 ± 217 ng/mL/hr, p < 0.0001) compared to the PRC under normal salt diet. However, the stimulation was significantly blunted in MD-NOS1KO mice (PRC = 678 ± 104 ng/mL/hr, p < 0.001). High salt intake suppressed the PRC to about 61% of the PRC level under a normal salt diet (p < 0.0001). Deletion of macula densa NOS1 further inhibited renin release to 33% of the levels of a normal salt diet. Hemorrhagic shock induced about a 3-fold increase in PRC in WT mice, but only about a 54% increase in the MD-NOS1KO mice (p < 0.0001). The MAP values were substantially greater in WT mice than in MD-NOS1KO mice within the first 6 hours following hemorrhagic shock (p < 0.001). Thus, WT mice showed a much quicker recovery in MAP than MD-NOS1KO mice. CONCLUSIONS Our study demonstrated that macula densa NOS1 plays an important role in mediating renin release. This mechanism is essential in maintaining blood pressure under hypovolemic situations such as hemorrhagic shock.
Collapse
Affiliation(s)
- Catherine Liu
- Department of Molecular Pharmacology and Physiology, University of South Florida College of Medicine, Tampa, FL 33620, USA
| | - Ximing Wang
- Department of Molecular Pharmacology and Physiology, University of South Florida College of Medicine, Tampa, FL 33620, USA
| | - Colby Parris
- Department of Molecular Pharmacology and Physiology, University of South Florida College of Medicine, Tampa, FL 33620, USA
| | - Qi Pang
- Department of Neurosurgery, Wayne State University School of Medicine, Detroit, MI 48202, USA
| | - Muhammad Usman Naeem
- Department of Molecular Pharmacology and Physiology, University of South Florida College of Medicine, Tampa, FL 33620, USA
| | - Lei Wang
- Department of Molecular Pharmacology and Physiology, University of South Florida College of Medicine, Tampa, FL 33620, USA
- Hypertension and Kidney Research Center, Morsani College of Medicine, University of South Florida, Tampa, FL 33620, USA
| |
Collapse
|
2
|
Reho JJ, Nakagawa P, Mouradian GC, Grobe CC, Saravia FL, Burnett CML, Kwitek AE, Kirby JR, Segar JL, Hodges MR, Sigmund CD, Grobe JL. Methods for the Comprehensive in vivo Analysis of Energy Flux, Fluid Homeostasis, Blood Pressure, and Ventilatory Function in Rodents. Front Physiol 2022; 13:855054. [PMID: 35283781 PMCID: PMC8914175 DOI: 10.3389/fphys.2022.855054] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 02/03/2022] [Indexed: 01/22/2023] Open
Abstract
Cardiovascular disease represents the leading cause of death in the United States, and metabolic diseases such as obesity represent the primary impediment to improving cardiovascular health. Rodent (mouse and rat) models are widely used to model cardiometabolic disease, and as a result, there is increasing interest in the development of accurate and precise methodologies with sufficiently high resolution to dissect mechanisms controlling cardiometabolic physiology in these small organisms. Further, there is great utility in the development of centralized core facilities furnished with high-throughput equipment configurations and staffed with professional content experts to guide investigators and ensure the rigor and reproducibility of experimental endeavors. Here, we outline the array of specialized equipment and approaches that are employed within the Comprehensive Rodent Metabolic Phenotyping Core (CRMPC) and our collaborating laboratories within the Departments of Physiology, Pediatrics, Microbiology & Immunology, and Biomedical Engineering at the Medical College of Wisconsin (MCW), for the detailed mechanistic dissection of cardiometabolic function in mice and rats. We highlight selected methods for the analysis of body composition and fluid compartmentalization, electrolyte accumulation and flux, energy accumulation and flux, physical activity, ingestive behaviors, ventilatory function, blood pressure, heart rate, autonomic function, and assessment and manipulation of the gut microbiota. Further, we include discussion of the advantages and disadvantages of these approaches for their use with rodent models, and considerations for experimental designs using these methods.
Collapse
Affiliation(s)
- John J. Reho
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, United States,Comprehensive Rodent Metabolic Phenotyping Core, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Pablo Nakagawa
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, United States,Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Gary C. Mouradian
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, United States,Neuroscience Research Center, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Connie C. Grobe
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Fatima L. Saravia
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Colin M. L. Burnett
- Department of Internal Medicine, University of Iowa Hospitals & Clinics, Iowa City, IA, United States
| | - Anne E. Kwitek
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, United States,Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI, United States,Department of Biomedical Engineering, Medical College of Wisconsin, Milwaukee, WI, United States
| | - John R. Kirby
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Jeffrey L. Segar
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, United States,Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI, United States,Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Matthew R. Hodges
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, United States,Neuroscience Research Center, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Curt D. Sigmund
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, United States,Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI, United States,Neuroscience Research Center, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Justin L. Grobe
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, United States,Comprehensive Rodent Metabolic Phenotyping Core, Medical College of Wisconsin, Milwaukee, WI, United States,Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI, United States,Neuroscience Research Center, Medical College of Wisconsin, Milwaukee, WI, United States,Department of Biomedical Engineering, Medical College of Wisconsin, Milwaukee, WI, United States,*Correspondence: Justin L. Grobe,
| |
Collapse
|