1
|
Ran Z, Mu BR, Wang DM, Xin-Huang, Ma QH, Lu MH. Parkinson's Disease and the Microbiota-Gut-Brain Axis: Metabolites, Mechanisms, and Innovative Therapeutic Strategies Targeting the Gut Microbiota. Mol Neurobiol 2025; 62:5273-5296. [PMID: 39531191 DOI: 10.1007/s12035-024-04584-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 10/22/2024] [Indexed: 11/16/2024]
Abstract
The human gut microbiota is diverse and abundant and plays important roles in regulating health by participating in metabolism and controlling physiological activities. The gut microbiota and its metabolites have been shown to affect the functioning of the gut and central nervous system through the microbiota-gut-brain axis. It is well established that microbiota play significant roles in the pathogenesis and progression of Parkinson's disease (PD). Disorders of the intestinal microbiota and altered metabolite levels are closely associated with PD. Here, the changes in intestinal microbiota and effects of metabolites in patients with PD are reviewed. Potential mechanisms underlying intestinal microbiota disorders in the pathogenesis of PD are briefly discussed. Additionally, we outline the current strategies for the treatment of PD that target the gut microbiota, emphasizing the development of promising novel strategies.
Collapse
Affiliation(s)
- Zhao Ran
- Chongqing Key Laboratory of Sichuan-Chongqing Co-Construction for Diagnosis and Treatment of Infectious Diseases Integrated Traditional Chinese and Western Medicine, College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Ben-Rong Mu
- Chongqing Key Laboratory of Sichuan-Chongqing Co-Construction for Diagnosis and Treatment of Infectious Diseases Integrated Traditional Chinese and Western Medicine, College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Dong-Mei Wang
- College of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Xin-Huang
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, Institute of Neuroscience, Soochow University, Suzhou, 215021, China
| | - Quan-Hong Ma
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, Institute of Neuroscience, Soochow University, Suzhou, 215021, China.
| | - Mei-Hong Lu
- Chongqing Key Laboratory of Sichuan-Chongqing Co-Construction for Diagnosis and Treatment of Infectious Diseases Integrated Traditional Chinese and Western Medicine, College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| |
Collapse
|
2
|
Gabrielli M, Zileri Dal Verme L, Zocco MA, Nista EC, Ojetti V, Gasbarrini A. The Role of the Gastrointestinal Microbiota in Parkinson's Disease. Biomolecules 2024; 15:26. [PMID: 39858421 PMCID: PMC11764295 DOI: 10.3390/biom15010026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 12/19/2024] [Accepted: 12/26/2024] [Indexed: 01/27/2025] Open
Abstract
BACKGROUND/OBJECTIVES Parkinson's disease (PD) is a progressive neurodegenerative disorder characterized by the loss of dopaminergic neurons leading to debilitating motor and non-motor symptoms. Beyond its well-known neurological features, emerging evidence underscores the pivotal role of the gut-brain axis and gastrointestinal microbiota in PD pathogenesis. Dysbiosis has been strongly linked to PD and is associated with increased intestinal permeability, chronic inflammation, and the production of neurotoxic metabolites that may exacerbate neuronal damage. METHODS This review delves into the complex interplay between PD and dysbiosis, shedding light on two peculiar subsets of dysbiosis, Helicobacter pylori infection and small-intestinal bacterial overgrowth. These conditions may not only contribute to PD progression but also influence therapeutic responses such as L-dopa efficacy. CONCLUSIONS The potential to modulate gut microbiota through probiotics, prebiotics, and synbiotics; fecal microbiota transplantation; and antibiotics represents a promising frontier for innovative PD treatments. Despite this potential, the current evidence is limited by small sample sizes and methodological variability across studies. Rigorous, large-scale, randomized placebo-controlled trials with standardized treatments in terms of composition, dosage, and duration are urgently needed to validate these findings and pave the way for microbiota-based therapeutic strategies in PD management.
Collapse
Affiliation(s)
- Maurizio Gabrielli
- Department of Medical and Surgical Sciences, Fondazione Policlinico Universitario A. Gemelli IRCCS, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (L.Z.D.V.); (M.A.Z.); (E.C.N.); (A.G.)
| | - Lorenzo Zileri Dal Verme
- Department of Medical and Surgical Sciences, Fondazione Policlinico Universitario A. Gemelli IRCCS, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (L.Z.D.V.); (M.A.Z.); (E.C.N.); (A.G.)
| | - Maria Assunta Zocco
- Department of Medical and Surgical Sciences, Fondazione Policlinico Universitario A. Gemelli IRCCS, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (L.Z.D.V.); (M.A.Z.); (E.C.N.); (A.G.)
| | - Enrico Celestino Nista
- Department of Medical and Surgical Sciences, Fondazione Policlinico Universitario A. Gemelli IRCCS, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (L.Z.D.V.); (M.A.Z.); (E.C.N.); (A.G.)
| | - Veronica Ojetti
- Internal Medicine Department, San Carlo di Nancy Hospital, Università UniCamillus, 00131 Rome, Italy;
| | - Antonio Gasbarrini
- Department of Medical and Surgical Sciences, Fondazione Policlinico Universitario A. Gemelli IRCCS, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (L.Z.D.V.); (M.A.Z.); (E.C.N.); (A.G.)
| |
Collapse
|
3
|
Pădureanu V, Dop D, Caragea DC, Rădulescu D, Pădureanu R, Forțofoiu MC. Cardiovascular and Neurological Diseases and Association with Helicobacter Pylori Infection-An Overview. Diagnostics (Basel) 2024; 14:1781. [PMID: 39202269 PMCID: PMC11353373 DOI: 10.3390/diagnostics14161781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 08/05/2024] [Accepted: 08/14/2024] [Indexed: 09/03/2024] Open
Abstract
This article investigates the link between Helicobacter pylori (H. pylori) infection and cardiovascular and neurological disorders. Recent research suggests that H. pylori may play a role in cardiovascular diseases like atherosclerosis, myocardial infarction, and stroke, as well as neurological diseases including Alzheimer's disease, multiple sclerosis, and Parkinson's disease. Cardiovascular Diseases: H. pylori induces endothelial dysfunction and chronic inflammation, promoting atherosclerotic plaque formation and other cardiac complications. High infection prevalence in cardiovascular patients implies that systemic inflammation from H. pylori accelerates disease progression. Eradication therapies combined with anti-inflammatory and lipid-lowering treatments may reduce cardiovascular risk. Neurological Diseases: H. pylori may contribute to Alzheimer's, multiple sclerosis, and Parkinson's through systemic inflammation, neuroinflammation, and autoimmune responses. Increased infection prevalence in these patients suggests bacterial involvement in disease pathogenesis. The eradication of H. pylori could reduce neuroinflammation and improve outcomes. Discussions and Future Research: Managing H. pylori infection in clinical practice could impact public health and treatment approaches. Further research is needed to clarify these relationships. Longitudinal and mechanistic studies are essential to fully understand H. pylori's role in these conditions. Conclusions: H. pylori infection is a potential risk factor for various cardiovascular and neurological conditions. Additional research is critical for developing effective prevention and treatment strategies. Targeted therapies, including H. pylori eradication combined with anti-inflammatory treatments, could improve clinical outcomes. These findings highlight the need for an integrated clinical approach to include H. pylori evaluation and treatment.
Collapse
Affiliation(s)
- Vlad Pădureanu
- Department of Internal Medicine, University of Medicine and Pharmacy Craiova, 200349 Craiova, Romania; (V.P.); (M.-C.F.)
| | - Dalia Dop
- Department of Pediatrics, University of Medicine and Pharmacy Craiova, 200349 Craiova, Romania;
| | - Daniel Cosmin Caragea
- Department of Nephrology, University of Medicine and Pharmacy Craiova, 200349 Craiova, Romania;
| | - Dumitru Rădulescu
- Department of Surgery, University of Medicine and Pharmacy Craiova, 200349 Craiova, Romania
| | - Rodica Pădureanu
- Department of Internal Medicine, University of Medicine and Pharmacy Craiova, 200349 Craiova, Romania; (V.P.); (M.-C.F.)
| | - Mircea-Cătălin Forțofoiu
- Department of Internal Medicine, University of Medicine and Pharmacy Craiova, 200349 Craiova, Romania; (V.P.); (M.-C.F.)
| |
Collapse
|
4
|
Vilela C, Araújo B, Soares-Guedes C, Caridade-Silva R, Martins-Macedo J, Teixeira C, Gomes ED, Prudêncio C, Vieira M, Teixeira FG. From the Gut to the Brain: Is Microbiota a New Paradigm in Parkinson's Disease Treatment? Cells 2024; 13:770. [PMID: 38727306 PMCID: PMC11083070 DOI: 10.3390/cells13090770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 04/24/2024] [Accepted: 04/26/2024] [Indexed: 05/13/2024] Open
Abstract
Parkinson's disease (PD) is recognized as the second most prevalent primary chronic neurodegenerative disorder of the central nervous system. Clinically, PD is characterized as a movement disorder, exhibiting an incidence and mortality rate that is increasing faster than any other neurological condition. In recent years, there has been a growing interest concerning the role of the gut microbiota in the etiology and pathophysiology of PD. The establishment of a brain-gut microbiota axis is now real, with evidence denoting a bidirectional communication between the brain and the gut microbiota through metabolic, immune, neuronal, and endocrine mechanisms and pathways. Among these, the vagus nerve represents the most direct form of communication between the brain and the gut. Given the potential interactions between bacteria and drugs, it has been observed that the therapies for PD can have an impact on the composition of the microbiota. Therefore, in the scope of the present review, we will discuss the current understanding of gut microbiota on PD and whether this may be a new paradigm for treating this devastating disease.
Collapse
Affiliation(s)
- Cristiana Vilela
- Center for Translational Health and Medical Biotechnology Research (TBIO)/Health Research Network (RISE-Health), ESS, Polytechnic of Porto, R. Dr. António Bernardino de Almeida 400, 4200-072 Porto, Portugal; (C.V.); (C.S.-G.); (E.D.G.); (C.P.); (M.V.)
| | - Bruna Araújo
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal; (B.A.); (J.M.-M.)
- ICVS/3B’s Associate Lab, PT Government Associated Lab, 4710-057/4805-017 Braga/Guimarães, Portugal
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, R. Alfredo Allen 208, 4200-135 Porto, Portugal; (R.C.-S.); (C.T.)
| | - Carla Soares-Guedes
- Center for Translational Health and Medical Biotechnology Research (TBIO)/Health Research Network (RISE-Health), ESS, Polytechnic of Porto, R. Dr. António Bernardino de Almeida 400, 4200-072 Porto, Portugal; (C.V.); (C.S.-G.); (E.D.G.); (C.P.); (M.V.)
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, R. Alfredo Allen 208, 4200-135 Porto, Portugal; (R.C.-S.); (C.T.)
| | - Rita Caridade-Silva
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, R. Alfredo Allen 208, 4200-135 Porto, Portugal; (R.C.-S.); (C.T.)
| | - Joana Martins-Macedo
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal; (B.A.); (J.M.-M.)
- ICVS/3B’s Associate Lab, PT Government Associated Lab, 4710-057/4805-017 Braga/Guimarães, Portugal
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, R. Alfredo Allen 208, 4200-135 Porto, Portugal; (R.C.-S.); (C.T.)
| | - Catarina Teixeira
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, R. Alfredo Allen 208, 4200-135 Porto, Portugal; (R.C.-S.); (C.T.)
| | - Eduardo D. Gomes
- Center for Translational Health and Medical Biotechnology Research (TBIO)/Health Research Network (RISE-Health), ESS, Polytechnic of Porto, R. Dr. António Bernardino de Almeida 400, 4200-072 Porto, Portugal; (C.V.); (C.S.-G.); (E.D.G.); (C.P.); (M.V.)
| | - Cristina Prudêncio
- Center for Translational Health and Medical Biotechnology Research (TBIO)/Health Research Network (RISE-Health), ESS, Polytechnic of Porto, R. Dr. António Bernardino de Almeida 400, 4200-072 Porto, Portugal; (C.V.); (C.S.-G.); (E.D.G.); (C.P.); (M.V.)
| | - Mónica Vieira
- Center for Translational Health and Medical Biotechnology Research (TBIO)/Health Research Network (RISE-Health), ESS, Polytechnic of Porto, R. Dr. António Bernardino de Almeida 400, 4200-072 Porto, Portugal; (C.V.); (C.S.-G.); (E.D.G.); (C.P.); (M.V.)
| | - Fábio G. Teixeira
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal; (B.A.); (J.M.-M.)
- ICVS/3B’s Associate Lab, PT Government Associated Lab, 4710-057/4805-017 Braga/Guimarães, Portugal
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, R. Alfredo Allen 208, 4200-135 Porto, Portugal; (R.C.-S.); (C.T.)
| |
Collapse
|
5
|
Pasricha TS, Guerrero-Lopez IL, Kuo B. Management of Gastrointestinal Symptoms in Parkinson's Disease: A Comprehensive Review of Clinical Presentation, Workup, and Treatment. J Clin Gastroenterol 2024; 58:211-220. [PMID: 38260966 PMCID: PMC10855995 DOI: 10.1097/mcg.0000000000001961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 12/11/2023] [Indexed: 01/24/2024]
Abstract
Gastrointestinal symptoms in Parkinson's disease (PD) are among the most prevalent and debilitating of complications and present unique diagnostic and management challenges. Patients with PD commonly experience dysphagia, nausea, bloating, and constipation related to pathologic involvement of the enteric nervous system. In turn, gastrointestinal complications may impact motor fluctuations and the efficacy of levodopa therapy. This review will explore the common gastrointestinal manifestations of PD with an emphasis on clinical presentation, workup, and treatment strategies.
Collapse
Affiliation(s)
- Trisha S. Pasricha
- Division of Gastroenterology, Massachusetts General Hospital
- Harvard Medical School, Boston, MA
| | | | - Braden Kuo
- Division of Gastroenterology, Massachusetts General Hospital
- Harvard Medical School, Boston, MA
| |
Collapse
|
6
|
Jonaitis P, Kupcinskas J, Gisbert JP, Jonaitis L. Helicobacter pylori Eradication Treatment in Older Patients. Drugs Aging 2024; 41:141-151. [PMID: 38340290 DOI: 10.1007/s40266-023-01090-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/12/2023] [Indexed: 02/12/2024]
Abstract
Helicobacter pylori is the main etiopathogenetic factor of chronic gastritis, peptic ulcer disease and gastric cancer. The world's population is shifting towards older people, who have the highest prevalence of H. pylori. Aging-related peculiarities could have an impact on the treatment of H. pylori and there is still a lack of research data in the older population. The aim of this review was to summarize the findings of the most recent information, publications and studies on the issues relating to H. pylori infection in older patients. H. pylori eradication offers gastrointestinal and extra gastrointestinal benefits in older patients. Based on the main guidelines, H. pylori should be eradicated independent of the patient's age, only reconsidering cases with terminal illness and low life expectancy. Proton pump inhibitors are generally safe and well tolerated. Some antibiotics require dose adjustment only in advanced renal insufficiency and the risk of hepatotoxicity is very low. Special precautions should be taken in patients with polypharmacy and those taking aspirin or non-steroidal anti-inflammatory drugs. In older patients, H. pylori eradication treatment frequently causes only mild and short-term adverse events; however, treatment compliance is usually still very good. H. pylori treatment in older patients does not increase the risk of Clostridium difficile infection. Optimal eradication effectiveness (> 90%) is mostly achieved with bismuth- and non-bismuth-based quadruple therapies. Susceptibility-guided treatment of H. pylori can contribute to increasing the effectiveness of eradication regimens in older adults. To achieve optimal H. pylori eradication effectiveness in older patients, the same guidelines, which are applied to adults, also apply to this population: avoiding repetitive treatment prescriptions, choosing quadruple therapies, prescribing longer treatment duration and administering high-dose proton pump inhibitors twice daily.
Collapse
Affiliation(s)
- Paulius Jonaitis
- Department of Gastroenterology, Lithuanian University of Health Sciences, Eiveniu Street 2, 50161, Kaunas, Lithuania.
| | - Juozas Kupcinskas
- Department of Gastroenterology, Lithuanian University of Health Sciences, Eiveniu Street 2, 50161, Kaunas, Lithuania
| | - Javier P Gisbert
- Hospital Universitario de La Princesa, Instituto de Investigación Sanitaria Princesa (IIS-Princesa), Universidad Autónoma de Madrid (UAM), Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), 28006, Madrid, Spain
| | - Laimas Jonaitis
- Department of Gastroenterology, Lithuanian University of Health Sciences, Eiveniu Street 2, 50161, Kaunas, Lithuania
| |
Collapse
|
7
|
Wei BR, Zhao YJ, Cheng YF, Huang C, Zhang F. Helicobacter pylori infection and Parkinson's Disease: etiology, pathogenesis and levodopa bioavailability. Immun Ageing 2024; 21:1. [PMID: 38166953 PMCID: PMC10759355 DOI: 10.1186/s12979-023-00404-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Accepted: 12/11/2023] [Indexed: 01/05/2024]
Abstract
Parkinson's disease (PD), a neurodegenerative disorder with an unknown etiology, is primarily characterized by the degeneration of dopamine (DA) neurons. The prevalence of PD has experienced a significant surge in recent years. The unidentified etiology poses limitations to the development of effective therapeutic interventions for this condition. Helicobacter pylori (H. pylori) infection has affected approximately half of the global population. Mounting evidences suggest that H. pylori infection plays an important role in PD through various mechanisms. The autotoxin produced by H. pylori induces pro-inflammatory cytokines release, thereby facilitating the occurrence of central inflammation that leads to neuronal damage. Simultaneously, H. pylori disrupts the equilibrium of gastrointestinal microbiota with an overgrowth of bacteria in the small intestinal known as small intestinal bacterial overgrowth (SIBO). This dysbiosis of the gut flora influences the central nervous system (CNS) through microbiome-gut-brain axis. Moreover, SIBO hampers levodopa absorption and affects its therapeutic efficacy in the treatment of PD. Also, H. pylori promotes the production of defensins to regulate the permeability of the blood-brain barrier, facilitating the entry of harmful factors into the CNS. In addition, H. pylori has been found to induce gastroparesis, resulting in a prolonged transit time for levodopa to reach the small intestine. H. pylori may exploit levodopa to facilitate its own growth and proliferation, or it can inflict damage to the gastrointestinal mucosa, leading to gastrointestinal ulcers and impeding levodopa absorption. Here, this review focused on the role of H. pylori infection in PD from etiology, pathogenesis to levodopa bioavailability.
Collapse
Affiliation(s)
- Bang-Rong Wei
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education and Key Laboratory of Basic Pharmacology of Guizhou Province and Laboratory Animal Centre, Zunyi Medical University, Zunyi, Guizhou, China
| | - Yu-Jia Zhao
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education and Key Laboratory of Basic Pharmacology of Guizhou Province and Laboratory Animal Centre, Zunyi Medical University, Zunyi, Guizhou, China
| | - Yu-Feng Cheng
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education and Key Laboratory of Basic Pharmacology of Guizhou Province and Laboratory Animal Centre, Zunyi Medical University, Zunyi, Guizhou, China
| | - Chun Huang
- The Fifth People's Hospital of Chongqing, Chongqing, China
| | - Feng Zhang
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education and Key Laboratory of Basic Pharmacology of Guizhou Province and Laboratory Animal Centre, Zunyi Medical University, Zunyi, Guizhou, China.
| |
Collapse
|
8
|
Awogbindin I, Wanklin M, Verkhratsky A, Tremblay MÈ. Microglia in Neurodegenerative Diseases. ADVANCES IN NEUROBIOLOGY 2024; 37:497-512. [PMID: 39207709 DOI: 10.1007/978-3-031-55529-9_27] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Neurodegenerative diseases are manifested by a progressive death of neural cells, resulting in the deterioration of central nervous system (CNS) functions, ultimately leading to specific behavioural and cognitive symptoms associated with affected brain regions. Several neurodegenerative disorders are caused by genetic variants or mutations, although the majority of cases are sporadic and linked to various environmental risk factors, with yet an unknown aetiology. Neuroglial changes are fundamental and often lead to the pathophysiology of neurodegenerative diseases. In particular, microglial cells, which are essential for maintaining CNS health, become compromised in their physiological functions with the exposure to environmental risk factors, genetic variants or mutations, as well as disease pathology. In this chapter, we cover the contribution of neuroglia, especially microglia, to several neurodegenerative diseases, including Nasu-Hakola disease, Parkinson's disease, amyotrophic lateral sclerosis, Alzheimer's disease, Huntington's disease, infectious disease-associated neurodegeneration, and metal-precipitated neurodegeneration. Future research perspectives for the field pertaining to the therapeutic targeting of microglia across these disease conditions are also discussed.
Collapse
Affiliation(s)
- Ifeoluwa Awogbindin
- Department of Biochemistry, Neuroimmunology Group, Molecular Drug Metabolism and Toxicology Laboratory, College of Medicine, University of Ibadan, Ibadan, Nigeria
- Division of Medical Sciences, Medical Sciences Building, University of Victoria, Victoria, BC, Canada
- Institute on Aging and Lifelong Health, University of Victoria, Victoria, BC, Canada
| | - Michael Wanklin
- Division of Medical Sciences, Medical Sciences Building, University of Victoria, Victoria, BC, Canada
| | - Alexei Verkhratsky
- Faculty of Life Sciences, The University of Manchester, Manchester, UK.
- Department of Neurosciences, University of the Basque Country, Leioa, Bizkaia, Spain.
- Department of Stem Cell Biology, State Research Institute Centre for Innovative Medicine, Vilnius, Lithuania.
- Department of Forensic Analytical Toxicology, School of Forensic Medicine, China Medical University, Shenyang, China.
- Axe neurosciences, Centre de recherche du CHU de Québec-Université Laval, Québec City, QC, Canada.
- IKERBASQUE, Basque Foundation for Science, Bilbao, Spain.
| | - Marie-Ève Tremblay
- Division of Medical Sciences, Medical Sciences Building, University of Victoria, Victoria, BC, Canada.
- Institute on Aging and Lifelong Health, University of Victoria, Victoria, BC, Canada.
- Axe neurosciences, Centre de recherche du CHU de Québec-Université Laval, Québec City, QC, Canada.
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada.
- Department of Molecular Medicine, Université Laval, Pavillon Ferdinand-Vandry, Québec City, QC, Canada.
- Department of Biochemistry and Molecular Biology, The University of British Columbia, Life Sciences Center, Vancouver, BC, Canada.
| |
Collapse
|
9
|
Candelli M, Franza L, Cianci R, Pignataro G, Merra G, Piccioni A, Ojetti V, Gasbarrini A, Franceschi F. The Interplay between Helicobacter pylori and Gut Microbiota in Non-Gastrointestinal Disorders: A Special Focus on Atherosclerosis. Int J Mol Sci 2023; 24:17520. [PMID: 38139349 PMCID: PMC10744166 DOI: 10.3390/ijms242417520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 12/07/2023] [Accepted: 12/14/2023] [Indexed: 12/24/2023] Open
Abstract
The discovery of Helicobacter pylori (H. pylori) in the early 1980s by Nobel Prize winners in medicine Robin Warren and Barry Marshall led to a revolution in physiopathology and consequently in the treatment of peptic ulcer disease. Subsequently, H. pylori has also been linked to non-gastrointestinal diseases, such as autoimmune thrombocytopenia, acne rosacea, and Raynaud's syndrome. In addition, several studies have shown an association with cardiovascular disease and atherosclerosis. Our narrative review aims to investigate the connection between H. pylori infection, gut microbiota, and extra-gastric diseases, with a particular emphasis on atherosclerosis. We conducted an extensive search on PubMed, Google Scholar, and Scopus, using the keywords "H. pylori", "dysbiosis", "microbiota", "atherosclerosis", "cardiovascular disease" in the last ten years. Atherosclerosis is a complex condition in which the arteries thicken or harden due to plaque deposits in the inner lining of an artery and is associated with several cardiovascular diseases. Recent research has highlighted the role of the microbiota in the pathogenesis of this group of diseases. H. pylori is able to both directly influence the onset of atherosclerosis and negatively modulate the microbiota. H. pylori is an important factor in promoting atherosclerosis. Progress is being made in understanding the underlying mechanisms, which could open the way to interesting new therapeutic perspectives.
Collapse
Affiliation(s)
- Marcello Candelli
- Emergency, Anesthesiological and Reanimation Sciences Department, Fondazione Policlinico Universitario A. Gemelli—IRCCS of Rome, 00168 Rome, Italy; (L.F.); (G.P.); (A.P.); (V.O.); (F.F.)
| | - Laura Franza
- Emergency, Anesthesiological and Reanimation Sciences Department, Fondazione Policlinico Universitario A. Gemelli—IRCCS of Rome, 00168 Rome, Italy; (L.F.); (G.P.); (A.P.); (V.O.); (F.F.)
| | - Rossella Cianci
- Department of Translational Medicine and Surgery, Catholic University, Fondazione Policlinico Universitario A. Gemelli—IRCCS, 00168 Rome, Italy;
| | - Giulia Pignataro
- Emergency, Anesthesiological and Reanimation Sciences Department, Fondazione Policlinico Universitario A. Gemelli—IRCCS of Rome, 00168 Rome, Italy; (L.F.); (G.P.); (A.P.); (V.O.); (F.F.)
| | - Giuseppe Merra
- Biomedicine and Prevention Department, Section of Clinical Nutrition and Nutrigenomics, Facoltà di Medicina e Chirurgia, Università degli Studi di Roma Tor Vergata, 00133 Rome, Italy;
| | - Andrea Piccioni
- Emergency, Anesthesiological and Reanimation Sciences Department, Fondazione Policlinico Universitario A. Gemelli—IRCCS of Rome, 00168 Rome, Italy; (L.F.); (G.P.); (A.P.); (V.O.); (F.F.)
| | - Veronica Ojetti
- Emergency, Anesthesiological and Reanimation Sciences Department, Fondazione Policlinico Universitario A. Gemelli—IRCCS of Rome, 00168 Rome, Italy; (L.F.); (G.P.); (A.P.); (V.O.); (F.F.)
| | - Antonio Gasbarrini
- Medical, Abdominal Surgery and Endocrine-Metabolic Science Department, Fondazione Policlinico Universitario A. Gemelli—IRCCS of Rome, 00168 Rome, Italy;
| | - Francesco Franceschi
- Emergency, Anesthesiological and Reanimation Sciences Department, Fondazione Policlinico Universitario A. Gemelli—IRCCS of Rome, 00168 Rome, Italy; (L.F.); (G.P.); (A.P.); (V.O.); (F.F.)
| |
Collapse
|
10
|
Torres-Carrillo N, Martínez-López E, Torres-Carrillo NM, López-Quintero A, Moreno-Ortiz JM, González-Mercado A, Gutiérrez-Hurtado IA. Pharmacomicrobiomics and Drug-Infection Interactions: The Impact of Commensal, Symbiotic and Pathogenic Microorganisms on a Host Response to Drug Therapy. Int J Mol Sci 2023; 24:17100. [PMID: 38069427 PMCID: PMC10707377 DOI: 10.3390/ijms242317100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 11/30/2023] [Accepted: 12/01/2023] [Indexed: 12/18/2023] Open
Abstract
Microorganisms have a close relationship with humans, whether it is commensal, symbiotic, or pathogenic. Recently, it has been documented that microorganisms may influence the response to drug therapy. Pharmacomicrobiomics is an emerging field that focuses on the study of how variations in the microbiome affect the disposition, action, and toxicity of drugs. Two additional sciences have been added to complement pharmacomicrobiomics, namely toxicomicrobiomics, which explores how the microbiome influences drug metabolism and toxicity, and pharmacoecology, which refers to modifications in the microbiome as a result of drug administration. In this context, we introduce the concept of "drug-infection interaction" to describe the influence of pathogenic microorganisms on drug response. This review analyzes the current state of knowledge regarding the relevance of microorganisms in the host's response to drugs. It also highlights promising areas for future research and proposes the term "drug-infection interaction" as an extension of pharmacomicrobiomics.
Collapse
Affiliation(s)
- Norma Torres-Carrillo
- Departamento de Microbiología y Patología, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Mexico; (N.T.-C.); (N.M.T.-C.)
| | - Erika Martínez-López
- Instituto de Nutrigenética y Nutrigenómica Traslacional, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Mexico;
- Departamento de Biología Molecular y Genómica, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Mexico;
| | - Nora Magdalena Torres-Carrillo
- Departamento de Microbiología y Patología, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Mexico; (N.T.-C.); (N.M.T.-C.)
| | - Andres López-Quintero
- Departamento de Biología Molecular y Genómica, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Mexico;
| | - José Miguel Moreno-Ortiz
- Instituto de Genética Humana “Dr. Enrique Corona Rivera”, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Mexico; (J.M.M.-O.); (A.G.-M.)
| | - Anahí González-Mercado
- Instituto de Genética Humana “Dr. Enrique Corona Rivera”, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Mexico; (J.M.M.-O.); (A.G.-M.)
| | - Itzae Adonai Gutiérrez-Hurtado
- Departamento de Biología Molecular y Genómica, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Mexico;
| |
Collapse
|
11
|
Justich MB, Rojas OL, Fasano A. The Role of Helicobacter pylori and Small Intestinal Bacterial Overgrowth in Parkinson's Disease. Semin Neurol 2023; 43:553-561. [PMID: 37562451 DOI: 10.1055/s-0043-1771468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/12/2023]
Abstract
Parkinson's disease (PD) is a common neurodegenerative disorder whose etiology remains largely unexplained. Several studies have aimed to describe a causative effect in the interactions between the gastrointestinal tract and the brain, for both PD pathogenesis and disease course. However, the results have been controversial. Helicobacter pylori and small intestinal bacterial overgrowth (SIBO) are theorized to be agents capable of triggering chronic proinflammatory changes with a possible neurotoxic effect, as well as a cause of erratic L-dopa response in PD patients. This review evaluates the individual and possibly synergistic influence of H. pylori and SIBO on PD, to provide an opportunity to consider prospective therapeutic approaches.
Collapse
Affiliation(s)
- Maria Belen Justich
- Edmond J. Safra Program in Parkinson's Disease, Morton and Gloria Shulman Movement Disorders Clinic, Toronto Western Hospital, University Health Network, Toronto, Ontario, Canada
- Division of Neurology, University of Toronto, Toronto, Ontario, Canada
| | - Olga L Rojas
- Krembil Brain Institute, University Health Network, Toronto, Ontario, Canada
- Department of Immunology, University of Toronto, Ontario, Canada
| | - Alfonso Fasano
- Edmond J. Safra Program in Parkinson's Disease, Morton and Gloria Shulman Movement Disorders Clinic, Toronto Western Hospital, University Health Network, Toronto, Ontario, Canada
- Division of Neurology, University of Toronto, Toronto, Ontario, Canada
- Department of Parkinson's Disease and Movement Disorders Rehabilitation, Moriggia-Pelascini Hospital - Gravedona ed Uniti, Como, Italy
| |
Collapse
|
12
|
Zhong Z, Ye M, Yan F. A review of studies on gut microbiota and levodopa metabolism. Front Neurol 2023; 14:1046910. [PMID: 37332996 PMCID: PMC10272754 DOI: 10.3389/fneur.2023.1046910] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Accepted: 05/02/2023] [Indexed: 06/20/2023] Open
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative disease globally. Levodopa (L-dopa) has been the cornerstone for treating Parkinson's since the 1960s. However, complications such as "wearing-off" and dyskinesia inevitably appear with disease progression. With the further development of microbiomics in recent years, It has been recognized that gut microbiota plays a crucial role in Parkinson's disease pathogenesis. However, Little is known about the impact of gut microbiota in PD treatment, especially in levodopa metabolism. This review examines the possible mechanisms of gut microbiota, such as Helicobacter pylori, Enterobacter faecalis, and Clostridium sporogenes, affecting L-dopa absorption. Furthermore, we review the current status of gut microbiota intervention strategies, providing new insights into the treatment of PD.
Collapse
Affiliation(s)
- Zhe Zhong
- Department of Neurology, Affiliated Zhongda Hospital, School of Medicine, Research Institution of Neuropsychiatry, Southeast University, Nanjing, China
| | - Min Ye
- Department of Neurology, Affiliated BenQ Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Fuling Yan
- Department of Neurology, Affiliated Zhongda Hospital, School of Medicine, Research Institution of Neuropsychiatry, Southeast University, Nanjing, China
| |
Collapse
|
13
|
Qamar MA, Rota S, Batzu L, Subramanian I, Falup-Pecurariu C, Titova N, Metta V, Murasan L, Odin P, Padmakumar C, Kukkle PL, Borgohain R, Kandadai RM, Goyal V, Chaudhuri KR. Chaudhuri's Dashboard of Vitals in Parkinson's syndrome: an unmet need underpinned by real life clinical tests. Front Neurol 2023; 14:1174698. [PMID: 37305739 PMCID: PMC10248458 DOI: 10.3389/fneur.2023.1174698] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 05/02/2023] [Indexed: 06/13/2023] Open
Abstract
We have recently published the notion of the "vitals" of Parkinson's, a conglomeration of signs and symptoms, largely nonmotor, that must not be missed and yet often not considered in neurological consultations, with considerable societal and personal detrimental consequences. This "dashboard," termed the Chaudhuri's vitals of Parkinson's, are summarized as 5 key vital symptoms or signs and comprise of (a) motor, (b) nonmotor, (c) visual, gut, and oral health, (d) bone health and falls, and finally (e) comorbidities, comedication, and dopamine agonist side effects, such as impulse control disorders. Additionally, not addressing the vitals also may reflect inadequate management strategies, leading to worsening quality of life and diminished wellness, a new concept for people with Parkinson's. In this paper, we discuss possible, simple to use, and clinically relevant tests that can be used to monitor the status of these vitals, so that these can be incorporated into clinical practice. We also use the term Parkinson's syndrome to describe Parkinson's disease, as the term "disease" is now abandoned in many countries, such as the U.K., reflecting the heterogeneity of Parkinson's, which is now considered by many as a syndrome.
Collapse
Affiliation(s)
- Mubasher A. Qamar
- Institute of Psychiatry, Psychology and Neuroscience, Department of Basic and Clinical Neuroscience, Division of Neuroscience, King’s College London, London, United Kingdom
- King’s College Hospital NHS Foundation Trust, London, United Kingdom
| | - Silvia Rota
- Institute of Psychiatry, Psychology and Neuroscience, Department of Basic and Clinical Neuroscience, Division of Neuroscience, King’s College London, London, United Kingdom
- King’s College Hospital NHS Foundation Trust, London, United Kingdom
| | - Lucia Batzu
- Institute of Psychiatry, Psychology and Neuroscience, Department of Basic and Clinical Neuroscience, Division of Neuroscience, King’s College London, London, United Kingdom
- King’s College Hospital NHS Foundation Trust, London, United Kingdom
| | - Indu Subramanian
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
- Parkinson’s Disease Research, Education and Clinical Centers, Greater Los Angeles Veterans Affairs Medical Center, Los Angeles, CA, United States
| | - Cristian Falup-Pecurariu
- Faculty of Medicine, Transilvania University of Braşov, Brașov, Romania
- Department of Neurology, County Clinic Hospital, Brașov, Romania
| | - Nataliya Titova
- Department of Neurology, Neurosurgery and Medical Genetics, Federal State Autonomous Educational Institution of Higher Education “N.I. Pirogov Russian National Research Medical University” of the Ministry of Health of the Russian Federation, Moscow, Russia
- Department of Neurodegenerative Diseases, Federal State Budgetary Institution “Federal Center of Brain Research and Neurotechnologies” of the Federal Medical Biological Agency, Moscow, Russia
| | - Vinod Metta
- Institute of Psychiatry, Psychology and Neuroscience, Department of Basic and Clinical Neuroscience, Division of Neuroscience, King’s College London, London, United Kingdom
- King’s College Hospital NHS Foundation Trust, London, United Kingdom
| | - Lulia Murasan
- Faculty of Medicine, Transilvania University of Braşov, Brașov, Romania
- Department of Neurology, County Clinic Hospital, Brașov, Romania
| | - Per Odin
- Department of Neurology, University Hospital, Lund, Sweden
| | | | - Prashanth L. Kukkle
- Center for Parkinson’s Disease and Movement Disorders, Manipal Hospital, Karnataka, India, Bangalore
- Parkinson’s Disease and Movement Disorders Clinic, Bangalore, Karnataka, India
| | - Rupam Borgohain
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Rukmini Mridula Kandadai
- Department of Neurology, Nizam’s Institute of Medical Sciences, Autonomous University, Hyderabad, India
| | - Vinay Goyal
- Neurology Department, Medanta, Gurugram, India
| | - Kallo Ray Chaudhuri
- Institute of Psychiatry, Psychology and Neuroscience, Department of Basic and Clinical Neuroscience, Division of Neuroscience, King’s College London, London, United Kingdom
- King’s College Hospital NHS Foundation Trust, London, United Kingdom
| |
Collapse
|
14
|
Mousa S, Sarfraz M, Mousa WK. The Interplay between Gut Microbiota and Oral Medications and Its Impact on Advancing Precision Medicine. Metabolites 2023; 13:metabo13050674. [PMID: 37233715 DOI: 10.3390/metabo13050674] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 05/14/2023] [Accepted: 05/16/2023] [Indexed: 05/27/2023] Open
Abstract
Trillions of diverse microbes reside in the gut and are deeply interwoven with the human physiological process, from food digestion, immune system maturation, and fighting invading pathogens, to drug metabolism. Microbial drug metabolism has a profound impact on drug absorption, bioavailability, stability, efficacy, and toxicity. However, our knowledge of specific gut microbial strains, and their genes that encode enzymes involved in the metabolism, is limited. The microbiome encodes over 3 million unique genes contributing to a huge enzymatic capacity, vastly expanding the traditional drug metabolic reactions that occur in the liver, manipulating their pharmacological effect, and, ultimately, leading to variation in drug response. For example, the microbial deactivation of anticancer drugs such as gemcitabine can lead to resistance to chemotherapeutics or the crucial role of microbes in modulating the efficacy of the anticancer drug, cyclophosphamide. On the other hand, recent findings show that many drugs can shape the composition, function, and gene expression of the gut microbial community, making it harder to predict the outcome of drug-microbiota interactions. In this review, we discuss the recent understanding of the multidirectional interaction between the host, oral medications, and gut microbiota, using traditional and machine-learning approaches. We analyze gaps, challenges, and future promises of personalized medicine that consider gut microbes as a crucial player in drug metabolism. This consideration will enable the development of personalized therapeutic regimes with an improved outcome, ultimately leading to precision medicine.
Collapse
Affiliation(s)
- Sara Mousa
- College of Pharmacy, Al Ain University, Abu Dhabi P.O. Box 112612, United Arab Emirates
| | - Muhammad Sarfraz
- College of Pharmacy, Al Ain University, Abu Dhabi P.O. Box 112612, United Arab Emirates
| | - Walaa K Mousa
- College of Pharmacy, Al Ain University, Abu Dhabi P.O. Box 112612, United Arab Emirates
- College of Pharmacy, Mansoura University, Mansoura 35516, Egypt
| |
Collapse
|
15
|
Controlling the Impact of Helicobacter pylori-Related Hyperhomocysteinemia on Neurodegeneration. Medicina (B Aires) 2023; 59:medicina59030504. [PMID: 36984505 PMCID: PMC10056452 DOI: 10.3390/medicina59030504] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 02/27/2023] [Accepted: 02/28/2023] [Indexed: 03/08/2023] Open
Abstract
Helicobacter pylori infection consists a high global burden affecting more than 50% of the world’s population. It is implicated, beyond substantiated local gastric pathologies, i.e., peptic ulcers and gastric cancer, in the pathophysiology of several neurodegenerative disorders, mainly by inducing hyperhomocysteinemia-related brain cortical thinning (BCT). BCT has been advocated as a possible biomarker associated with neurodegenerative central nervous system disorders such as Alzheimer’s disease, Parkinson’s disease, multiple sclerosis, and/or glaucoma, termed as “ocular Alzheimer’s disease”. According to the infection hypothesis in relation to neurodegeneration, Helicobacter pylori as non-commensal gut microbiome has been advocated as trigger and/or mediator of neurodegenerative diseases, such as the development of Alzheimer’s disease. Among others, Helicobacter pylori-related inflammatory mediators, defensins, autophagy, vitamin D, dietary factors, role of probiotics, and some pathogenetic considerations including relevant involved genes are discussed within this opinion article. In conclusion, by controlling the impact of Helicobacter pylori-related hyperhomocysteinemia on neurodegenerative disorders might offer benefits, and additional research is warranted to clarify this crucial topic currently representing a major worldwide burden.
Collapse
|
16
|
Contaldi E, Magistrelli L, Comi C. Disease mechanisms as subtypes: Immune dysfunction in Parkinson's disease. HANDBOOK OF CLINICAL NEUROLOGY 2023; 193:67-93. [PMID: 36803824 DOI: 10.1016/b978-0-323-85555-6.00008-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Abstract
In recent years, the contraposition between inflammatory and neurodegenerative processes has been increasingly challenged. Inflammation has been emphasized as a key player in the onset and progression of Parkinson disease (PD) and other neurodegenerative disorders. The strongest indicators of the involvement of the immune system derived from evidence of microglial activation, profound imbalance in phenotype and composition of peripheral immune cells, and impaired humoral immune responses. Moreover, peripheral inflammatory mechanisms (e.g., involving the gut-brain axis) and immunogenetic factors are likely to be implicated. Even though several lines of preclinical and clinical studies are supporting and defining the complex relationship between the immune system and PD, the exact mechanisms are currently unknown. Similarly, the temporal and causal connections between innate and adaptive immune responses and neurodegeneration are unsettled, challenging our ambition to define an integrated and holistic model of the disease. Despite these difficulties, current evidence is providing the unique opportunity to develop immune-targeted approaches for PD, thus enriching our therapeutic armamentarium. This chapter aims to provide an extensive overview of past and present studies that explored the implication of the immune system in neurodegeneration, thus paving the road for the concept of disease modification in PD.
Collapse
Affiliation(s)
- Elena Contaldi
- Movement Disorders Centre, "Maggiore della Carità" University Hospital, Department of Translational Medicine, University of Piemonte Orientale, Novara, Italy
| | - Luca Magistrelli
- Movement Disorders Centre, "Maggiore della Carità" University Hospital, Department of Translational Medicine, University of Piemonte Orientale, Novara, Italy
| | - Cristoforo Comi
- Neurology Unit, S.Andrea Hospital, Department of Translational Medicine, University of Piemonte Orientale, Vercelli, Italy.
| |
Collapse
|
17
|
Leta V, Klingelhoefer L, Longardner K, Campagnolo M, Levent HÇ, Aureli F, Metta V, Bhidayasiri R, Chung-Faye G, Falup-Pecurariu C, Stocchi F, Jenner P, Warnecke T, Ray Chaudhuri K. Gastrointestinal barriers to levodopa transport and absorption in Parkinson's disease. Eur J Neurol 2023; 30:1465-1480. [PMID: 36757008 DOI: 10.1111/ene.15734] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 01/29/2023] [Accepted: 01/31/2023] [Indexed: 02/10/2023]
Abstract
Levodopa is the gold standard for the symptomatic treatment of Parkinson's disease (PD). There are well documented motor and non-motor fluctuations, however, that occur almost inevitably once levodopa is started after a variable period in people with PD. Whilst brain neurodegenerative processes play a part in the pathogenesis of these fluctuations, a range of barriers across the gastrointestinal (GI) tract can alter levodopa pharmacokinetics, ultimately contributing to non-optimal levodopa response and symptoms fluctuations. GI barriers to levodopa transport and absorption include dysphagia, delayed gastric emptying, constipation, Helicobacter pylori infection, small intestinal bacterial overgrowth and gut dysbiosis. In addition, a protein-rich diet and concomitant medication intake can further alter levodopa pharmacokinetics. This can result in unpredictable or sub-optimal levodopa response, 'delayed on' or 'no on' phenomena. In this narrative review, we provided an overview on the plethora of GI obstacles to levodopa transport and absorption in PD and their implications on levodopa pharmacokinetics and development of motor fluctuations. In addition, management strategies to address GI dysfunction in PD are highlighted, including use of non-oral therapies to bypass the GI tract.
Collapse
Affiliation(s)
- Valentina Leta
- Parkinson's Foundation Center of Excellence at King's College Hospital, London, UK.,Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, King's College London and National Institute for Health Research (NIHR) Mental Health Biomedical Research Centre, Institute of Psychology, Psychiatry and Neurosciences, King's College London, London, UK
| | | | - Katherine Longardner
- Parkinson and Other Movement Disorders Center, Department of Neurosciences, University of California San Diego, La Jolla, California, USA
| | - Marta Campagnolo
- Department of Neurosciences (DNS), University of Padova, Padova, Italy
| | | | - Federico Aureli
- Department of Biomedical and NeuroMotor Sciences (DIBINEM), Alma Mater Studiorum-University of Bologna, Bologna, Italy
| | - Vinod Metta
- Parkinson's Foundation Center of Excellence at King's College Hospital, London, UK.,Kings College Hospital London, Dubai, United Arab Emirates
| | - Roongroj Bhidayasiri
- Chulalongkorn Centre of Excellence for Parkinson's Disease and Related Disorders, Department of Medicine, Faculty of Medicine, Chulalongkorn University and King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Bangkok, Thailand.,Academy of Science, Royal Society of Thailand, Bangkok, Thailand
| | - Guy Chung-Faye
- Parkinson's Foundation Center of Excellence at King's College Hospital, London, UK.,Kings College Hospital London, Dubai, United Arab Emirates
| | | | - Fabrizio Stocchi
- Department of Neurology, University San Raffaele Roma and IRCCS San Raffaele Pisana, Rome, Italy
| | - Peter Jenner
- Institute of Pharmaceutical Sciences, Faculty of Life Science and Medicine, King's College London, London, UK
| | - Tobias Warnecke
- Department of Neurology and Neurorehabilitation, Klinikum Osnabrueck-Academic Teaching Hospital of the WWU Muenster, Osnabrueck, Germany
| | - K Ray Chaudhuri
- Parkinson's Foundation Center of Excellence at King's College Hospital, London, UK.,Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, King's College London and National Institute for Health Research (NIHR) Mental Health Biomedical Research Centre, Institute of Psychology, Psychiatry and Neurosciences, King's College London, London, UK
| | | |
Collapse
|
18
|
Masood N, Jimenez-Shahed J. Effective Management of "OFF" Episodes in Parkinson's Disease: Emerging Treatment Strategies and Unmet Clinical Needs. Neuropsychiatr Dis Treat 2023; 19:247-266. [PMID: 36721795 PMCID: PMC9884436 DOI: 10.2147/ndt.s273121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 01/05/2023] [Indexed: 01/26/2023] Open
Abstract
Motor complications related to the chronic administration of levodopa and failure to prevent the neurodegenerative disease process counterbalance the pivotal discovery of levodopa as the cornerstone of PD treatment. Excellent motor control is offered early during the course of treatment, but this diminishes as pathological changes in the striatum lead to synaptic dopamine levels becoming completely dependent on exogenous dopamine. This non-physiologic stimulation of dopamine receptors eventually manifests as OFF episodes. As no disease modifying therapy exists for PD that can disrupt these pathological changes, most research and treatment focuses on optimization of dopaminergic stimulation of striatal receptors so that they mimic tonic, physiologic stimulation as closely as possible. Strategies focusing on these challenges have included non-pharmacologic approaches, optimizing levodopa pharmacokinetics, using adjunctive treatments including those with non-dopaminergic mechanisms, and implementing rescue therapies. Device aided therapies, including surgery, are also available. In this review, we will focus on effective management of motor symptoms related to OFF periods, including emerging strategies. Unmet clinical needs will be discussed, including non-motor symptoms, targeted molecular therapies and disease modifying therapy.
Collapse
Affiliation(s)
- Nbaa Masood
- Department of Neurology, Icahn School of Medicine at Mount Sinai, Mount Sinai West, New York, NY, USA
| | - Joohi Jimenez-Shahed
- Department of Neurology, Icahn School of Medicine at Mount Sinai, Mount Sinai West, New York, NY, USA
| |
Collapse
|
19
|
Abstract
This narrative review seeks to examine the relationships between bacterial microbiomes and infectious disease. This is achieved by detailing how different human host microbiomes develop and function, from the earliest infant acquisitions of maternal and environmental species through to the full development of microbiomes by adulthood. Communication between bacterial species or communities of species within and outside of the microbiome is a factor in both maintenance of homeostasis and management of threats from the external environment. Dysbiosis of this homeostasis is key to understanding the development of disease states. Several microbiomes and the microbiota within are used as prime examples of how changes in species composition, particularly at the phylum level, leads to such diverse conditions as inflammatory bowel disease (IBD), type 2 diabetes, psoriasis, Parkinson's disease, reflux oesophagitis and others. The review examines spatial relationships between microbiomes to understand how dysbiosis in the gut microbiome in particular can influence diseases in distant host sites via routes such as the gut-lung, gut-skin and gut-brain axes. Microbiome interaction with host processes such as adaptive immunity is increasingly identified as critical to developing the capacity of the immune system to react to pathogens. Dysbiosis of essential bacteria involved in modification of host substrates such as bile acid components can result in development of Crohn's disease, small intestine bacterial overgrowth, hepatic cancer and obesity. Interactions between microbiomes in distantly located sites are being increasingly being identified, resulting in a 'whole of body' effect by the combined host microbiome.
Collapse
Affiliation(s)
- Jim Manos
- Infection, Immunity and InflammationSchool of Medical SciencesFaculty of Medicine and HealthThe Charles Perkins CentreThe University of SydneySydneyNSWAustralia
| |
Collapse
|
20
|
Kandpal M, Indari O, Baral B, Jakhmola S, Tiwari D, Bhandari V, Pandey RK, Bala K, Sonawane A, Jha HC. Dysbiosis of Gut Microbiota from the Perspective of the Gut-Brain Axis: Role in the Provocation of Neurological Disorders. Metabolites 2022; 12:1064. [PMID: 36355147 PMCID: PMC9692419 DOI: 10.3390/metabo12111064] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 10/29/2022] [Accepted: 11/01/2022] [Indexed: 11/06/2022] Open
Abstract
The gut-brain axis is a bidirectional communication network connecting the gastrointestinal tract and central nervous system. The axis keeps track of gastrointestinal activities and integrates them to connect gut health to higher cognitive parts of the brain. Disruption in this connection may facilitate various neurological and gastrointestinal problems. Neurodegenerative diseases are characterized by the progressive dysfunction of specific populations of neurons, determining clinical presentation. Misfolded protein aggregates that cause cellular toxicity and that aid in the collapse of cellular proteostasis are a defining characteristic of neurodegenerative proteinopathies. These disorders are not only caused by changes in the neural compartment but also due to other factors of non-neural origin. Mounting data reveal that the majority of gastrointestinal (GI) physiologies and mechanics are governed by the central nervous system (CNS). Furthermore, the gut microbiota plays a critical role in the regulation and physiological function of the brain, although the mechanism involved has not yet been fully interpreted. One of the emerging explanations of the start and progression of many neurodegenerative illnesses is dysbiosis of the gut microbial makeup. The present understanding of the literature surrounding the relationship between intestinal dysbiosis and the emergence of certain neurological diseases, such as Alzheimer's disease, Parkinson's disease, Huntington's disease, and multiple sclerosis, is the main emphasis of this review. The potential entry pathway of the pathogen-associated secretions and toxins into the CNS compartment has been explored in this article at the outset of neuropathology. We have also included the possible mechanism of undelaying the synergistic effect of infections, their metabolites, and other interactions based on the current understanding.
Collapse
Affiliation(s)
- Meenakshi Kandpal
- Infection Bioengineering Group, Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Simrol, Indore 453552, Madhya Pradesh, India
| | - Omkar Indari
- Infection Bioengineering Group, Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Simrol, Indore 453552, Madhya Pradesh, India
| | - Budhadev Baral
- Infection Bioengineering Group, Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Simrol, Indore 453552, Madhya Pradesh, India
| | - Shweta Jakhmola
- Infection Bioengineering Group, Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Simrol, Indore 453552, Madhya Pradesh, India
| | - Deeksha Tiwari
- Infection Bioengineering Group, Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Simrol, Indore 453552, Madhya Pradesh, India
| | - Vasundhra Bhandari
- Department of Pharmacoinformatics, National Institute of Pharmaceutical Education and Research, Hyderabad 500037, Telengana, India
| | - Rajan Kumar Pandey
- Department of Medical Biochemistry and Biophysics, Karolinska Institute, 17165 Stockholm, Sweden
| | - Kiran Bala
- Algal Ecotechnology & Sustainability Group, Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Simrol, Indore 453552, Madhya Pradesh, India
| | - Avinash Sonawane
- Disease Biology & Cellular Immunology Lab, Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Simrol, Indore 453552, Madhya Pradesh, India
| | - Hem Chandra Jha
- Infection Bioengineering Group, Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Simrol, Indore 453552, Madhya Pradesh, India
| |
Collapse
|
21
|
Gulnaz A, Chang JE, Maeng HJ, Shin KH, Lee KR, Chae YJ. A mechanism-based understanding of altered drug pharmacokinetics by gut microbiota. JOURNAL OF PHARMACEUTICAL INVESTIGATION 2022. [DOI: 10.1007/s40005-022-00600-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
22
|
Li Y, Yin Q, Wang B, Shen T, Luo W, Liu T. Preclinical reserpine models recapitulating motor and non-motor features of Parkinson’s disease: Roles of epigenetic upregulation of alpha-synuclein and autophagy impairment. Front Pharmacol 2022; 13:944376. [PMID: 36313295 PMCID: PMC9597253 DOI: 10.3389/fphar.2022.944376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Accepted: 09/30/2022] [Indexed: 11/13/2022] Open
Abstract
Reserpine is an effective drug for the clinical treatment of hypertension. It also induces Parkinson’s disease (PD)-like symptoms in humans and animals possible through the inhibition of monoamine vesicular transporters, thus decreasing the levels of monoamine neurotransmitters in the brain. However, the precise mechanisms remain unclear. Herein, we aimed to develop a preclinical reserpine model recapitulating the non-motor and motor symptoms of PD and investigate the underlying potential cellular mechanisms. Incubation of reserpine induced apoptosis, led to the accumulation of intracellular reactive oxygen species (ROS), lowered DNA methylation of alpha-synuclein gene, resulted in alpha-synuclein protein deposition, and elevated the ratio of LC3-II/LC3-Ⅰ and p62 in cultured SH-SY5Y cells. Feeding reserpine dose-dependently shortened the lifespan and caused impairment of motor functions in male and female Drosophila. Moreover, long-term oral administration of reserpine led to multiple motor and non-motor symptoms, including constipation, pain hypersensitivity, olfactory impairment, and depression-like behaviors in mice. The mechanistic studies showed that chronic reserpine exposure caused hypomethylation of the alpha-synuclein gene and up-regulated its expression and elevated the ratio of LC3-II/LC3-Ⅰ and expression of p62 in the substantia nigra of mice. Thus, we established preclinical animal models using reserpine to recapitulate the motor and non-motor symptoms of PD. Chronic reserpine exposure epigenetically elevated the levels of alpha-synuclein expression possible by lowering the DNA methylation status and inducing autophagic impairment in vitro and in vivo.
Collapse
Affiliation(s)
- Yang Li
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, China
- Department of Neurology, Huzhou Central Hospital, Affiliated Central Hospital Huzhou University, Huzhou, China
| | - Qiao Yin
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Bing Wang
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Tingting Shen
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Weifeng Luo
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, China
- *Correspondence: Tong Liu, ; Weifeng Luo,
| | - Tong Liu
- Institute of Pain Medicine and Special Environmental Medicine, Nantong University, Nantong, China
- *Correspondence: Tong Liu, ; Weifeng Luo,
| |
Collapse
|
23
|
Hospital-treated infections in early- and mid-life and risk of Alzheimer's disease, Parkinson's disease, and amyotrophic lateral sclerosis: A nationwide nested case-control study in Sweden. PLoS Med 2022; 19:e1004092. [PMID: 36107840 PMCID: PMC9477309 DOI: 10.1371/journal.pmed.1004092] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 08/15/2022] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND Experimental observations have suggested a role of infection in the etiology of neurodegenerative disease. In human studies, however, it is difficult to disentangle whether infection is a risk factor or rather a comorbidity or secondary event of neurodegenerative disease. To this end, we examined the risk of 3 most common neurodegenerative diseases in relation to previous inpatient or outpatient episodes of hospital-treated infections. METHODS AND FINDINGS We performed a nested case-control study based on several national registers in Sweden. Cases were individuals newly diagnosed with Alzheimer's disease (AD), Parkinson's disease (PD), or amyotrophic lateral sclerosis (ALS) during 1970 to 2016 in Sweden, identified from the National Patient Register. For each case, 5 controls individually matched to the case on sex and year of birth were randomly selected from the general population. Conditional logistic regression was used to estimate odds ratios (ORs) and 95% confidence intervals (CIs) with adjustment for potential confounders, including sex, year of birth, area of residence, educational attainment, family history of neurodegenerative disease, and Charlson comorbidity index. Infections experienced within 5 years before diagnosis of neurodegenerative disease were excluded to reduce the influence of surveillance bias and reverse causation. The analysis included 291,941 AD cases (median age at diagnosis: 76.2 years; male: 46.6%), 103,919 PD cases (74.3; 55.1%), and 10,161 ALS cases (69.3; 56.8%). A hospital-treated infection 5 or more years earlier was associated with an increased risk of AD (OR = 1.16, 95% CI: 1.15 to 1.18, P < 0.001) and PD (OR = 1.04, 95% CI: 1.02 to 1.06, P < 0.001). Similar results were observed for bacterial, viral, and other infections and among different sites of infection including gastrointestinal and genitourinary infections. Multiple infections before age 40 conveyed the greatest risk of AD (OR = 2.62, 95% CI: 2.52 to 2.72, P < 0.001) and PD (OR = 1.41, 95% CI: 1.29 to 1.53, P < 0.001). The associations were primarily due to AD and PD diagnosed before 60 years (OR = 1.93, 95% CI: 1.89 to 1.98 for AD, P < 0.001; OR = 1.29, 95% CI: 1.22 to 1.36 for PD, P < 0.001), whereas no association was found for those diagnosed at 60 years or older (OR = 1.00, 95% CI: 0.98 to 1.01 for AD, P = 0.508; OR = 1.01, 95% CI: 0.99 to 1.03 for PD, P = 0.382). No association was observed for ALS (OR = 0.97, 95% CI: 0.92 to 1.03, P = 0.384), regardless of age at diagnosis. Excluding infections experienced within 10 years before diagnosis of neurodegenerative disease confirmed these findings. Study limitations include the potential misclassification of hospital-treated infections and neurodegenerative diseases due to incomplete coverage of the National Patient Register, as well as the residual confounding from unmeasured risk or protective factors for neurodegenerative diseases. CONCLUSIONS Hospital-treated infections, especially in early- and mid-life, were associated with an increased risk of AD and PD, primarily among AD and PD cases diagnosed before 60 years. These findings suggest that infectious events may be a trigger or amplifier of a preexisting disease process, leading to clinical onset of neurodegenerative disease at a relatively early age. However, due to the observational nature of the study, these results do not formally prove a causal link.
Collapse
|
24
|
Zeng J, Wang X, Pan F, Mao Z. The relationship between Parkinson's disease and gastrointestinal diseases. Front Aging Neurosci 2022; 14:955919. [PMID: 36034146 PMCID: PMC9399652 DOI: 10.3389/fnagi.2022.955919] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Accepted: 07/25/2022] [Indexed: 01/03/2023] Open
Abstract
An increasing number of studies have provided evidence for the hypothesis that the pathogenesis of Parkinson's disease (PD) may derive from the gut. Firstly, Lewy pathology can be induced in the enteric nervous system (ENS) and be transported to the central nervous system (CNS) via the vagal nerve. Secondly, the altered composition of gut microbiota causes an imbalance between beneficial and deleterious microbial metabolites which interacts with the increased gut permeability and the gut inflammation as well as the systemic inflammation. The activated inflammatory status then affects the CNS and promotes the pathology of PD. Given the above-mentioned findings, researchers start to pay attention to the connection between PD and gastrointestinal diseases including irritable bowel syndrome, inflammatory bowel disease (IBD), microscopic colitis (MC), gastrointestinal infections, gastrointestinal neoplasms, and colonic diverticular disease (CDD). This review focuses on the association between PD and gastrointestinal diseases as well as the pathogenesis of PD from the gut.
Collapse
Affiliation(s)
- Jiaqi Zeng
- Department of Gastroenterology and Hepatology, First Medical Center, Chinese PLA General Hospital, Beijing, China
- Medical School of Chinese PLA, Beijing, China
| | - Xinchan Wang
- Department of Gastroenterology and Hepatology, First Medical Center, Chinese PLA General Hospital, Beijing, China
- Medical School of Nankai University, Tianjin, China
| | - Fei Pan
- Department of Gastroenterology and Hepatology, First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Zhiqi Mao
- Department of Neurosurgery, First Medical Center, Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
25
|
He J, Liu Y, Ouyang Q, Li R, Li J, Chen W, Hu W, He L, Bao Q, Li P, Hu C. Helicobacter pylori and unignorable extragastric diseases: Mechanism and implications. Front Microbiol 2022; 13:972777. [PMID: 35992650 PMCID: PMC9386483 DOI: 10.3389/fmicb.2022.972777] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Accepted: 07/11/2022] [Indexed: 11/15/2022] Open
Abstract
Considered as the most popular pathogen worldwide, Helicobacter pylori is intensively associated with diverse gastric diseases, including gastric ulcers, chronic progressive gastritis, and gastric cancer. Aside from its pathogenic effect on gastric diseases, growing evidences reveal that H. pylori may be related to numerous extragastric diseases. In this article, we reviewed recent studies and systematically elucidated that H. pylori may interfere with many biological processes outside the stomach and influence the occurrence of various extragastric diseases. Many epidemiological studies have indicated that H. pylori plays a pathogenic role in COVID-19, atherosclerosis, hyperemesis gravidarum and several other extragastric diseases, while the effect of H. pylori is currently under investigation in gastroesophageal reflux disease, asthma, and inflammatory bowel disease. Moreover, we also summarized the possible pathogenic mechanisms of H. pylori that may be related to chronic systemic inflammation and molecular mimicker. Taken together, this review provides a new perspective on the role of H. pylori in extragastric diseases and explores the possible mechanisms, which may help guide clinical treatment.
Collapse
Affiliation(s)
- Junjian He
- Department of Gastroenterology, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Yunyi Liu
- Department of Gastroenterology, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Qin Ouyang
- Department of Medicinal Chemistry, College of Pharmacy, Army Medical University, Chongqing, China
| | - Rongxing Li
- Department of Foreign Languages, Army Medical University, Chongqing, China
| | - Jie Li
- Department of Gastroenterology, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Weiyan Chen
- Department of Gastroenterology, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Weichao Hu
- Department of Gastroenterology, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Lijiao He
- Department of Gastroenterology, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Qiyu Bao
- Department of Gastroenterology, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Ping Li
- Institute of Cardiovascular Diseases, Xinqiao Hospital, Army Medical University, Chongqing, China
- *Correspondence: Ping Li,
| | - Changjiang Hu
- Department of Gastroenterology, Xinqiao Hospital, Army Medical University, Chongqing, China
- Changjiang Hu,
| |
Collapse
|
26
|
Arena G, Sharma K, Agyeah G, Krüger R, Grünewald A, Fitzgerald JC. Neurodegeneration and Neuroinflammation in Parkinson's Disease: a Self-Sustained Loop. Curr Neurol Neurosci Rep 2022; 22:427-440. [PMID: 35674870 PMCID: PMC9174445 DOI: 10.1007/s11910-022-01207-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/02/2022] [Indexed: 02/06/2023]
Abstract
PURPOSE OF REVIEW Neuroinflammation plays a significant role in Parkinson's disease (PD) etiology along with mitochondrial dysfunction and impaired proteostasis. In this context, mechanisms related to immune response can act as modifiers at different steps of the neurodegenerative process and justify the growing interest in anti-inflammatory agents as potential disease-modifying treatments in PD. The discovery of inherited gene mutations in PD has allowed researchers to develop cellular and animal models to study the mechanisms of the underlying biology, but the original cause of neuroinflammation in PD is still debated to date. RECENT FINDINGS Cell autonomous alterations in neuronal cells, including mitochondrial damage and protein aggregation, could play a role, but recent findings also highlighted the importance of intercellular communication at both local and systemic level. This has given rise to debate about the role of non-neuronal cells in PD and reignited intense research into the gut-brain axis and other non-neuronal interactions in the development of the disease. Whatever the original trigger of neuroinflammation in PD, what appears quite clear is that the aberrant activation of glial cells and other components of the immune system creates a vicious circle in which neurodegeneration and neuroinflammation nourish each other. In this review, we will provide an up-to-date summary of the main cellular alterations underlying neuroinflammation in PD, including those induced by environmental factors (e.g. the gut microbiome) and those related to the genetic background of affected patients. Starting from the lesson provided by familial forms of PD, we will discuss pathophysiological mechanisms linked to inflammation that could also play a role in idiopathic forms. Finally, we will comment on the potential clinical translatability of immunobiomarkers identified in PD patient cohorts and provide an update on current therapeutic strategies aimed at overcoming or preventing inflammation in PD.
Collapse
Affiliation(s)
- G Arena
- Luxembourg Center for Systems Biomedicine (LCSB), University of Luxembourg, Esch-sur-Alzette, Luxembourg.
| | - K Sharma
- Department of Neurodegenerative Diseases, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - G Agyeah
- Luxembourg Center for Systems Biomedicine (LCSB), University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - R Krüger
- Luxembourg Center for Systems Biomedicine (LCSB), University of Luxembourg, Esch-sur-Alzette, Luxembourg
- Transversal Translational Medicine, Luxembourg Institute of Health, Strassen, Luxembourg
- Centre Hospitalier de Luxembourg (CHL), Luxembourg, Luxembourg
| | - A Grünewald
- Luxembourg Center for Systems Biomedicine (LCSB), University of Luxembourg, Esch-sur-Alzette, Luxembourg
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
| | - J C Fitzgerald
- Department of Neurodegenerative Diseases, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| |
Collapse
|
27
|
Sun X, Xue L, Wang Z, Xie A. Update to the Treatment of Parkinson's Disease Based on the Gut-Brain Axis Mechanism. Front Neurosci 2022; 16:878239. [PMID: 35873830 PMCID: PMC9299103 DOI: 10.3389/fnins.2022.878239] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 06/20/2022] [Indexed: 12/27/2022] Open
Abstract
Gastrointestinal (GI) symptoms represented by constipation were significant non-motor symptoms of Parkinson’s disease (PD) and were considered early manifestations and aggravating factors of the disease. This paper reviewed the research progress of the mechanism of the gut-brain axis (GBA) in PD and discussed the roles of α-synuclein, gut microbiota, immune inflammation, neuroendocrine, mitochondrial autophagy, and environmental toxins in the mechanism of the GBA in PD. Treatment of PD based on the GBA theory has also been discussed, including (1) dietary therapy, such as probiotics, vitamin therapy, Mediterranean diet, and low-calorie diet, (2) exercise therapy, (3) drug therapy, including antibiotics; GI peptides; GI motility agents, and (4) fecal flora transplantation can improve the flora. (5) Vagotomy and appendectomy were associated but not recommended.
Collapse
Affiliation(s)
- Xiaohui Sun
- Department of Neurology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Li Xue
- Recording Room, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Zechen Wang
- Department of Neurology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Anmu Xie
- Department of Neurology, The Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
28
|
Di Luca DG, Reyes NGD, Fox SH. Newly Approved and Investigational Drugs for Motor Symptom Control in Parkinson's Disease. Drugs 2022; 82:1027-1053. [PMID: 35841520 PMCID: PMC9287529 DOI: 10.1007/s40265-022-01747-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/26/2022] [Indexed: 12/11/2022]
Abstract
Motor symptoms are a core feature of Parkinson's disease (PD) and cause a significant burden on patients' quality of life. Oral levodopa is still the most effective treatment, however, the motor benefits are countered by inherent pharmacologic limitations of the drug. Additionally, with disease progression, chronic levodopa leads to the appearance of motor complications including motor fluctuations and dyskinesia. Furthermore, several motor abnormalities of posture, balance, and gait may become less responsive to levodopa. With these unmet needs and our evolving understanding of the neuroanatomic and pathophysiologic underpinnings of PD, several advances have been made in defining new therapies for motor symptoms. These include newer levodopa formulations and drug delivery systems, refinements in adjunctive medications, and non-dopaminergic treatment strategies. Although some are in early stages of development, these novel treatments potentially widen the available options for the management of motor symptoms allowing clinicians to provide an individually tailored care for PD patients. Here, we review the existing and emerging interventions for PD with focus on newly approved and investigational drugs for motor symptoms, motor fluctuations, dyskinesia, and balance and gait dysfunction.
Collapse
Affiliation(s)
- Daniel Garbin Di Luca
- Edmond J. Safra Program in Parkinson’s Disease, Movement Disorders Clinic, Krembil Brain Institute, Toronto Western Hospital, Toronto, ON Canada
- Institute of Health Policy, Management and Evaluation, Dalla Lana School of Public Health, University of Toronto, Toronto, ON Canada
| | - Nikolai Gil D. Reyes
- Edmond J. Safra Program in Parkinson’s Disease, Movement Disorders Clinic, Krembil Brain Institute, Toronto Western Hospital, Toronto, ON Canada
| | - Susan H. Fox
- Edmond J. Safra Program in Parkinson’s Disease, Movement Disorders Clinic, Krembil Brain Institute, Toronto Western Hospital, Toronto, ON Canada
| |
Collapse
|
29
|
Exploring the multifactorial aspects of Gut Microbiome in Parkinson's Disease. Folia Microbiol (Praha) 2022; 67:693-706. [PMID: 35583791 PMCID: PMC9526693 DOI: 10.1007/s12223-022-00977-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 05/02/2022] [Indexed: 02/06/2023]
Abstract
Advanced research in health science has broadened our view in approaching and understanding the pathophysiology of diseases and has also revolutionised diagnosis and treatment. Ever since the establishment of Braak’s hypothesis in the propagation of alpha-synuclein from the distant olfactory and enteric nervous system towards the brain in Parkinson’s Disease (PD), studies have explored and revealed the involvement of altered gut microbiota in PD. This review recapitulates the gut microbiome associated with PD severity, duration, motor and non-motor symptoms, and antiparkinsonian treatment from recent literature. Gut microbial signatures in PD are potential predictors of the disease and are speculated to be used in early diagnosis and treatment. In brief, the review also emphasises on implications of the prebiotic, probiotic, faecal microbiota transplantation, and dietary interventions as alternative treatments in modulating the disease symptoms in PD.
Collapse
|
30
|
Uberti AF, Callai-Silva N, Grahl MVC, Piovesan AR, Nachtigall EG, Furini CRG, Carlini CR. Helicobacter pylori Urease: Potential Contributions to Alzheimer’s Disease. Int J Mol Sci 2022; 23:ijms23063091. [PMID: 35328512 PMCID: PMC8949269 DOI: 10.3390/ijms23063091] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 03/09/2022] [Accepted: 03/10/2022] [Indexed: 11/24/2022] Open
Abstract
Alzheimer’s disease (AD) causes dementia and memory loss in the elderly. Deposits of beta-amyloid peptide and hyperphosphorylated tau protein are present in a brain with AD. A filtrate of Helicobacter pylori’s culture was previously found to induce hyperphosphorylation of tau in vivo, suggesting that bacterial exotoxins could permeate the blood–brain barrier and directly induce tau’s phosphorylation. H. pylori, which infects ~60% of the world population and causes gastritis and gastric cancer, produces a pro-inflammatory urease (HPU). Here, the neurotoxic potential of HPU was investigated in cultured cells and in rats. SH-SY5Y neuroblastoma cells exposed to HPU (50–300 nM) produced reactive oxygen species (ROS) and had an increased [Ca2+]i. HPU-treated BV-2 microglial cells produced ROS, cytokines IL-1β and TNF-α, and showed reduced viability. Rats received daily i.p., HPU (5 µg) for 7 days. Hyperphosphorylation of tau at Ser199, Thr205 and Ser396 sites, with no alterations in total tau or GSK-3β levels, and overexpression of Iba1, a marker of microglial activation, were seen in hippocampal homogenates. HPU was not detected in the brain homogenates. Behavioral tests were performed to assess cognitive impairments. Our findings support previous data suggesting an association between infection by H. pylori and tauopathies such as AD, possibly mediated by its urease.
Collapse
Affiliation(s)
- Augusto F. Uberti
- Laboratory of Neurotoxins, Brain Institute of Rio Grande do Sul (BRAINS) and Graduate Program in Medicine and Health Sciences, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre CEP 90610-000, RS, Brazil; (A.F.U.); (N.C.-S.); (M.V.C.G.)
| | - Natalia Callai-Silva
- Laboratory of Neurotoxins, Brain Institute of Rio Grande do Sul (BRAINS) and Graduate Program in Medicine and Health Sciences, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre CEP 90610-000, RS, Brazil; (A.F.U.); (N.C.-S.); (M.V.C.G.)
| | - Matheus V. C. Grahl
- Laboratory of Neurotoxins, Brain Institute of Rio Grande do Sul (BRAINS) and Graduate Program in Medicine and Health Sciences, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre CEP 90610-000, RS, Brazil; (A.F.U.); (N.C.-S.); (M.V.C.G.)
| | - Angela R. Piovesan
- Center of Biotechnology, Graduate Program in Cellular and Molecular Biology, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre CEP 91501-970, RS, Brazil;
| | - Eduarda G. Nachtigall
- Laboratory of Cognition and Memory Neurobiology, Brain Institute of Rio Grande do Sul (BRAINS) and Graduate Program in Biomedical Gerontology, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre CEP 90610-000, RS, Brazil; (E.G.N.); (C.R.G.F.)
| | - Cristiane R. G. Furini
- Laboratory of Cognition and Memory Neurobiology, Brain Institute of Rio Grande do Sul (BRAINS) and Graduate Program in Biomedical Gerontology, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre CEP 90610-000, RS, Brazil; (E.G.N.); (C.R.G.F.)
| | - Celia Regina Carlini
- Laboratory of Neurotoxins, Brain Institute of Rio Grande do Sul (BRAINS) and Graduate Program in Medicine and Health Sciences, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre CEP 90610-000, RS, Brazil; (A.F.U.); (N.C.-S.); (M.V.C.G.)
- Correspondence: ; Tel.: +55-51-3320-5986
| |
Collapse
|
31
|
Anis E, Xie A, Brundin L, Brundin P. Digesting recent findings: gut alpha-synuclein, microbiome changes in Parkinson's disease. Trends Endocrinol Metab 2022; 33:147-157. [PMID: 34949514 DOI: 10.1016/j.tem.2021.11.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 11/24/2021] [Indexed: 01/22/2023]
Abstract
Two hallmarks of Parkinson's disease (PD) are the widespread deposition of misfolded alpha-synuclein (αSyn) protein in the nervous system and loss of substantia nigra dopamine neurons. Recent research has suggested that αSyn aggregates in the enteric nervous system (ENS) lead to prodromal gastrointestinal (GI) symptoms such as constipation in PD, then propagating to the brain stem and eventually triggering neurodegeneration and motor symptoms. Additionally, whether the microbiome changes in PD contribute to the primary pathogenesis or, alternatively, are consequential to either the disease process or medication is still unclear. In this review, we discuss the possible roles of αSyn and microbiome changes in the GI system in PD and consider if and how the changes interact and contribute to the disease process and symptoms.
Collapse
Affiliation(s)
- Ehraz Anis
- Parkinson's Disease Center, Department of Neurodegenerative Science, Van Andel Institute, Grand Rapids, MI 49503, USA
| | - Aoji Xie
- Parkinson's Disease Center, Department of Neurodegenerative Science, Van Andel Institute, Grand Rapids, MI 49503, USA
| | - Lena Brundin
- Parkinson's Disease Center, Department of Neurodegenerative Science, Van Andel Institute, Grand Rapids, MI 49503, USA
| | - Patrik Brundin
- Parkinson's Disease Center, Department of Neurodegenerative Science, Van Andel Institute, Grand Rapids, MI 49503, USA.
| |
Collapse
|
32
|
|
33
|
Toledo ARL, Monroy GR, Salazar FE, Lee JY, Jain S, Yadav H, Borlongan CV. Gut-Brain Axis as a Pathological and Therapeutic Target for Neurodegenerative Disorders. Int J Mol Sci 2022; 23:1184. [PMID: 35163103 PMCID: PMC8834995 DOI: 10.3390/ijms23031184] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 01/12/2022] [Accepted: 01/13/2022] [Indexed: 02/06/2023] Open
Abstract
Human lifestyle and dietary behaviors contribute to disease onset and progression. Neurodegenerative diseases (NDDs), considered multifactorial disorders, have been associated with changes in the gut microbiome. NDDs display pathologies that alter brain functions with a tendency to worsen over time. NDDs are a worldwide health problem; in the US alone, 12 million Americans will suffer from NDDs by 2030. While etiology may vary, the gut microbiome serves as a key element underlying NDD development and prognosis. In particular, an inflammation-associated microbiome plagues NDDs. Conversely, sequestration of this inflammatory microbiome by a correction in the dysbiotic state of the gut may render therapeutic effects on NDDs. To this end, treatment with short-chain fatty acid-producing bacteria, the main metabolites responsible for maintaining gut homeostasis, ameliorates the inflammatory microbiome. This intimate pathological link between the gut and NDDs suggests that the gut-brain axis (GBA) acts as an underexplored area for developing therapies for NDDs. Traditionally, the classification of NDDs depends on their clinical presentation, mostly manifesting as extrapyramidal and pyramidal movement disorders, with neuropathological evaluation at autopsy as the gold standard for diagnosis. In this review, we highlight the evolving notion that GBA stands as an equally sensitive pathological marker of NDDs, particularly in Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis and chronic stroke. Additionally, GBA represents a potent therapeutic target for treating NDDs.
Collapse
Affiliation(s)
- Alma Rosa Lezama Toledo
- Center of Excellence for Aging and Brain Repair, Department of Neurosurgery and Brain Repair, Morsani College of Medicine, University of South Florida, 12901 Bruce B Downs Blvd, Tampa, FL 33612, USA; (A.R.L.T.); (G.R.M.); (F.E.S.); (J.-Y.L.)
| | - Germán Rivera Monroy
- Center of Excellence for Aging and Brain Repair, Department of Neurosurgery and Brain Repair, Morsani College of Medicine, University of South Florida, 12901 Bruce B Downs Blvd, Tampa, FL 33612, USA; (A.R.L.T.); (G.R.M.); (F.E.S.); (J.-Y.L.)
| | - Felipe Esparza Salazar
- Center of Excellence for Aging and Brain Repair, Department of Neurosurgery and Brain Repair, Morsani College of Medicine, University of South Florida, 12901 Bruce B Downs Blvd, Tampa, FL 33612, USA; (A.R.L.T.); (G.R.M.); (F.E.S.); (J.-Y.L.)
| | - Jea-Young Lee
- Center of Excellence for Aging and Brain Repair, Department of Neurosurgery and Brain Repair, Morsani College of Medicine, University of South Florida, 12901 Bruce B Downs Blvd, Tampa, FL 33612, USA; (A.R.L.T.); (G.R.M.); (F.E.S.); (J.-Y.L.)
| | - Shalini Jain
- Center for Microbiome Research, Department of Neurosurgery and Brain Repair, Morsani College of Medicine, University of South Florida, 12901 Bruce B Downs Blvd, Tampa, FL 33612, USA; (S.J.); (H.Y.)
| | - Hariom Yadav
- Center for Microbiome Research, Department of Neurosurgery and Brain Repair, Morsani College of Medicine, University of South Florida, 12901 Bruce B Downs Blvd, Tampa, FL 33612, USA; (S.J.); (H.Y.)
| | - Cesario Venturina Borlongan
- Center of Excellence for Aging and Brain Repair, Department of Neurosurgery and Brain Repair, Morsani College of Medicine, University of South Florida, 12901 Bruce B Downs Blvd, Tampa, FL 33612, USA; (A.R.L.T.); (G.R.M.); (F.E.S.); (J.-Y.L.)
| |
Collapse
|
34
|
Wang X, Jiang D, Li T, Zhang X, Wang R, Gao S, Yang F, Wang Y, Tian Q, Xie C, Liang J. Association between microbiological risk factors and neurodegenerative disorders: An umbrella review of systematic reviews and meta-analyses. Front Psychiatry 2022; 13:991085. [PMID: 36213914 PMCID: PMC9537612 DOI: 10.3389/fpsyt.2022.991085] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 08/30/2022] [Indexed: 02/05/2023] Open
Abstract
UNLABELLED The role of microbiological factors in the development of neurodegenerative diseases is attracting increasing attention, while the relationship remains debated. This study aimed to comprehensively summarize and evaluate the associations between microbiological factors and the risk of neurodegenerative disorders with an umbrella review. PubMed, Embase, and the Cochrane library were used to search for papers from the earliest to March 2021 for identifying meta-analyses and systematic reviews that examined associations between microbiological factors and neurodegenerative diseases. AMSTAR2 tool was employed to evaluate the methodical quality of systematic reviews and meta-analyses. The effect size and 95% confidence interval (95% CI) were recalculated with a random effect model after the overlap was recognized by the corrected covered area (CCA) method. The heterogeneity of each meta-analysis was measured by the I 2 statistic and 95% prediction interval (95% PI). Additionally, publication bias and the quality of evidence were evaluated for all 37 unique associations. Only 4 associations had above the medium level of evidence, and the rest associations presented a low level of evidence. Among them, helicobacter pylori (HP), infection, and bacteria are associated with Parkinson's disease (PD), and the other one verifies that periodontal disease is a risk factor for all types of dementia. Following the evidence of our study, eradication of HP and aggressive treatment of periodontitis are beneficial for the prevention of PD and dementia, respectively. This umbrella review provides comprehensive quality-grade evidence on the relationship between microbial factors and neurodegenerative disease. Regardless of much evidence linking microbial factors to neurodegenerative diseases, these associations are not necessarily causal, and the evidence level is generally low. Thus, more effective studies are required. SYSTEMATIC REVIEW REGISTRATION https://www.crd.york.ac.uk/PROSPERO/#searchadvanced, PROSPERO, identifier: CRD42021239512.
Collapse
Affiliation(s)
- Xin Wang
- Department of Neurology, Beijing Huairou Hospital of Traditional Chinese Medicine, Beijing, China
| | - Deming Jiang
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Tianxiong Li
- Surgery Centre of Diabetes Mellitus, Peking University Ninth School of Clinical Medicine (Beijing Shijitan Hospital, Capital Medical University), Beijing, China
| | - Xiao Zhang
- Department of Neurology, Beijing Huairou Hospital of Traditional Chinese Medicine, Beijing, China
| | - Ran Wang
- Department of Neurology, Beijing Huairou Hospital of Traditional Chinese Medicine, Beijing, China
| | - Song Gao
- Department of Neurology, Beijing Huairou Hospital of Traditional Chinese Medicine, Beijing, China
| | - Fengyi Yang
- Department of Neurology, Beijing Huairou Hospital of Traditional Chinese Medicine, Beijing, China
| | - Yan Wang
- Department of Neurology, Beijing Huairou Hospital of Traditional Chinese Medicine, Beijing, China
| | - Qi Tian
- Department of Neurology, Beijing Huairou Hospital of Traditional Chinese Medicine, Beijing, China
| | - Chunrong Xie
- Department of Neurology, Beijing Huairou Hospital of Traditional Chinese Medicine, Beijing, China
- Chunrong Xie
| | - Jinghong Liang
- Department of Maternal and Child Health, School of Public Health, Sun Yat-sen University, Guangzhou, China
- *Correspondence: Jinghong Liang
| |
Collapse
|
35
|
Berlamont H, Bruggeman A, Bauwens E, Vandendriessche C, Clarebout E, Xie J, De Bruyckere S, Van Imschoot G, Van Wonterghem E, Ducatelle R, Santens P, Smet A, Haesebrouck F, Vandenbroucke RE. Gastric Helicobacter suis Infection Partially Protects against Neurotoxicity in A 6-OHDA Parkinson's Disease Mouse Model. Int J Mol Sci 2021; 22:ijms222111328. [PMID: 34768765 PMCID: PMC8582972 DOI: 10.3390/ijms222111328] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 10/12/2021] [Accepted: 10/14/2021] [Indexed: 12/21/2022] Open
Abstract
The exact etiology of Parkinson’s disease (PD) remains largely unknown, but more and more research suggests the involvement of the gut microbiota. Interestingly, idiopathic PD patients were shown to have at least a 10 times higher prevalence of Helicobacter suis (H. suis) DNA in gastric biopsies compared to control patients. H. suis is a zoonotic Helicobacter species that naturally colonizes the stomach of pigs and non-human primates but can be transmitted to humans. Here, we investigated the influence of a gastric H. suis infection on PD disease progression through a 6-hydroxydopamine (6-OHDA) mouse model. Therefore, mice with either a short- or long-term H. suis infection were stereotactically injected with 6-OHDA in the left striatum and sampled one week later. Remarkably, a reduced loss of dopaminergic neurons was seen in the H. suis/6-OHDA groups compared to the control/6-OHDA groups. Correspondingly, motor function of the H. suis-infected 6-OHDA mice was superior to that in the non-infected 6-OHDA mice. Interestingly, we also observed higher expression levels of antioxidant genes in brain tissue from H. suis-infected 6-OHDA mice, as a potential explanation for the reduced 6-OHDA-induced cell loss. Our data support an unexpected neuroprotective effect of gastric H. suis on PD pathology, mediated through changes in oxidative stress.
Collapse
Affiliation(s)
- Helena Berlamont
- Department of Pathobiology, Pharmacology and Zoological Medicine, Faculty of Veterinary Medicine, Ghent University, 9820 Merelbeke, Belgium; (H.B.); (E.B.); (S.D.B.); (R.D.); (F.H.)
| | - Arnout Bruggeman
- VIB Center for Inflammation Research, 9052 Ghent, Belgium; (A.B.); (C.V.); (E.C.); (J.X.); (G.V.I.); (E.V.W.)
- Department of Biomedical Molecular Biology, Ghent University, 9052 Ghent, Belgium
- Department of Neurology, Ghent University Hospital, 9000 Ghent, Belgium;
| | - Eva Bauwens
- Department of Pathobiology, Pharmacology and Zoological Medicine, Faculty of Veterinary Medicine, Ghent University, 9820 Merelbeke, Belgium; (H.B.); (E.B.); (S.D.B.); (R.D.); (F.H.)
| | - Charysse Vandendriessche
- VIB Center for Inflammation Research, 9052 Ghent, Belgium; (A.B.); (C.V.); (E.C.); (J.X.); (G.V.I.); (E.V.W.)
- Department of Biomedical Molecular Biology, Ghent University, 9052 Ghent, Belgium
| | - Elien Clarebout
- VIB Center for Inflammation Research, 9052 Ghent, Belgium; (A.B.); (C.V.); (E.C.); (J.X.); (G.V.I.); (E.V.W.)
- Department of Biomedical Molecular Biology, Ghent University, 9052 Ghent, Belgium
| | - Junhua Xie
- VIB Center for Inflammation Research, 9052 Ghent, Belgium; (A.B.); (C.V.); (E.C.); (J.X.); (G.V.I.); (E.V.W.)
- Department of Biomedical Molecular Biology, Ghent University, 9052 Ghent, Belgium
| | - Sofie De Bruyckere
- Department of Pathobiology, Pharmacology and Zoological Medicine, Faculty of Veterinary Medicine, Ghent University, 9820 Merelbeke, Belgium; (H.B.); (E.B.); (S.D.B.); (R.D.); (F.H.)
| | - Griet Van Imschoot
- VIB Center for Inflammation Research, 9052 Ghent, Belgium; (A.B.); (C.V.); (E.C.); (J.X.); (G.V.I.); (E.V.W.)
- Department of Biomedical Molecular Biology, Ghent University, 9052 Ghent, Belgium
| | - Elien Van Wonterghem
- VIB Center for Inflammation Research, 9052 Ghent, Belgium; (A.B.); (C.V.); (E.C.); (J.X.); (G.V.I.); (E.V.W.)
- Department of Biomedical Molecular Biology, Ghent University, 9052 Ghent, Belgium
| | - Richard Ducatelle
- Department of Pathobiology, Pharmacology and Zoological Medicine, Faculty of Veterinary Medicine, Ghent University, 9820 Merelbeke, Belgium; (H.B.); (E.B.); (S.D.B.); (R.D.); (F.H.)
| | - Patrick Santens
- Department of Neurology, Ghent University Hospital, 9000 Ghent, Belgium;
| | - Annemieke Smet
- Laboratory of Experimental Medicine and Pediatrics, Faculty of Medicine and Health Sciences, University of Antwerp, 2610 Antwerp, Belgium;
| | - Freddy Haesebrouck
- Department of Pathobiology, Pharmacology and Zoological Medicine, Faculty of Veterinary Medicine, Ghent University, 9820 Merelbeke, Belgium; (H.B.); (E.B.); (S.D.B.); (R.D.); (F.H.)
| | - Roosmarijn E. Vandenbroucke
- VIB Center for Inflammation Research, 9052 Ghent, Belgium; (A.B.); (C.V.); (E.C.); (J.X.); (G.V.I.); (E.V.W.)
- Department of Biomedical Molecular Biology, Ghent University, 9052 Ghent, Belgium
- Correspondence: ; Tel.: +32-9-3313730
| |
Collapse
|
36
|
Lotz SK, Blackhurst BM, Reagin KL, Funk KE. Microbial Infections Are a Risk Factor for Neurodegenerative Diseases. Front Cell Neurosci 2021; 15:691136. [PMID: 34305533 PMCID: PMC8292681 DOI: 10.3389/fncel.2021.691136] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 06/08/2021] [Indexed: 12/13/2022] Open
Abstract
Neurodegenerative diseases, such as Alzheimer's disease, Parkinson's disease, and amyotrophic lateral sclerosis, comprise a family of disorders characterized by progressive loss of nervous system function. Neuroinflammation is increasingly recognized to be associated with many neurodegenerative diseases but whether it is a cause or consequence of the disease process is unclear. Of growing interest is the role of microbial infections in inciting degenerative neuroinflammatory responses and genetic factors that may regulate those responses. Microbial infections cause inflammation within the central nervous system through activation of brain-resident immune cells and infiltration of peripheral immune cells. These responses are necessary to protect the brain from lethal infections but may also induce neuropathological changes that lead to neurodegeneration. This review discusses the molecular and cellular mechanisms through which microbial infections may increase susceptibility to neurodegenerative diseases. Elucidating these mechanisms is critical for developing targeted therapeutic approaches that prevent the onset and slow the progression of neurodegenerative diseases.
Collapse
Affiliation(s)
| | | | | | - Kristen E. Funk
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, NC, United States
| |
Collapse
|