1
|
Wang T, Chen Z, Zhang Y, Liu M, Sui H, Tang Q. Recent advances in the development and application of colorectal cancer mouse models. Front Pharmacol 2025; 16:1553637. [PMID: 40406485 PMCID: PMC12096087 DOI: 10.3389/fphar.2025.1553637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Accepted: 03/20/2025] [Indexed: 05/26/2025] Open
Abstract
Colorectal cancer (CRC) remains a significant global health challenge, necessitating the development of reliable preclinical models to advance mechanistic understanding and therapeutic innovation. This review comprehensively examines the diverse spectrum of rodent models employed in CRC research, focusing on their unique characteristics, applications, and translational relevance. We systematically evaluate conventional models, including carcinogen-induced models and genetically engineered mouse models (GEMMs), which have been instrumental in elucidating tumorigenic pathways and genetic drivers. Furthermore, we highlight the emergence of patient-derived xenografts (PDX) as a transformative tool for recapitulating tumor heterogeneity and predicting clinical responses. The review also explores metastatic models, which are critical for studying advanced disease, and spontaneous models that mimic natural tumor progression. Additionally, we discuss the growing utility of composite animal models, which integrate multiple methodologies to better reflect the complexity of human CRC. By comparing the strengths and limitations of each model system, this review provides a framework for selecting appropriate models based on specific research objectives. Collectively, these preclinical platforms have significantly advanced our understanding of CRC biology and continue to drive the development of targeted therapies and personalized treatment strategies.
Collapse
Affiliation(s)
- Ting Wang
- Nanxiang Branch of Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Zhen Chen
- The Second Clinical Medical College of Henan University of Chinese Medicine, Zhengzhou, China
| | - Yuli Zhang
- Jiading Branch of Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Min Liu
- Nanxiang Branch of Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hua Sui
- Jiading Branch of Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qingfeng Tang
- Nanxiang Branch of Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
2
|
Shah DD, Chorawala MR, Raghani NR, Patel R, Fareed M, Kashid VA, Prajapati BG. Tumor microenvironment: recent advances in understanding and its role in modulating cancer therapies. Med Oncol 2025; 42:117. [PMID: 40102282 DOI: 10.1007/s12032-025-02641-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Accepted: 02/24/2025] [Indexed: 03/20/2025]
Abstract
Tumor microenvironment (TME) denotes the non-cancerous cells and components presented in the tumor, including molecules produced and released by them. Interactions between cancer cells, immune cells, stromal cells, and the extracellular matrix within the TME create a dynamic ecosystem that can either promote or hinder tumor growth and spread. The TME plays a pivotal role in either promoting or inhibiting tumor growth and dissemination, making it a critical factor to consider in the development of effective cancer therapies. Understanding the intricate interplay within the TME is crucial for devising effective cancer therapies. Combination therapies involving inhibitors of immune checkpoint blockade (ICB), and/or chemotherapy now offer new approaches for cancer therapy. However, it remains uncertain how to best utilize these strategies in the context of the complex tumor microenvironment. Oncogene-driven changes in tumor cell metabolism can impact the TME to limit immune responses and present barriers to cancer therapy. Cellular and acellular components in tumor microenvironment can reprogram tumor initiation, growth, invasion, metastasis, and response to therapies. Components in the TME can reprogram tumor behavior and influence responses to treatments, facilitating immune evasion, nutrient deprivation, and therapeutic resistance. Moreover, the TME can influence angiogenesis, promoting the formation of blood vessels that sustain tumor growth. Notably, the TME facilitates immune evasion, establishes a nutrient-deprived milieu, and induces therapeutic resistance, hindering treatment efficacy. A paradigm shift from a cancer-centric model to a TME-centric one has revolutionized cancer research and treatment. However, effectively targeting specific cells or pathways within the TME remains a challenge, as the complexity of the TME poses hurdles in designing precise and effective therapies. This review highlights challenges in targeting the tumor microenvironment to achieve therapeutic efficacy; explore new approaches and technologies to better decipher the tumor microenvironment; and discuss strategies to intervene in the tumor microenvironment and maximize therapeutic benefits.
Collapse
Affiliation(s)
- Disha D Shah
- Department of Pharmacology and Pharmacy Practice, L. M. College of Pharmacy, Opp. Gujarat University, Navrangpura, Ahmedabad, Gujarat, 380009, India
| | - Mehul R Chorawala
- Department of Pharmacology and Pharmacy Practice, L. M. College of Pharmacy, Opp. Gujarat University, Navrangpura, Ahmedabad, Gujarat, 380009, India.
| | - Neha R Raghani
- Department of Pharmacology and Pharmacy Practice, Saraswati Institute of Pharmaceutical Sciences, Gandhinagar, Gujarat, 382355, India
| | - Rajanikant Patel
- Department of Product Development, Granules Pharmaceuticals Inc., 3701 Concorde Parkway, Chantilly, VA, 20151, USA
| | - Mohammad Fareed
- Department of Basic Medical Sciences, College of Medicine, AlMaarefa University, P.O. Box 71666, 13713, Riyadh, Saudi Arabia
| | - Vivekanand A Kashid
- MABD Institute of Pharmaceutical Education and Research, Babhulgaon, Yeola, Nashik, India
| | - Bhupendra G Prajapati
- Department of Pharmaceutics and Pharmaceutical Technology, Shree S. K. Patel College of Pharmaceutical Education & Research, Ganpat University, Kherva, Mehsana, Gujarat, 384012, India.
- Faculty of Pharmacy, Silpakorn University, Nakhon Pathom, 73000, Thailand.
- Centre for Research Impact & Outcome, Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, 140401, India.
| |
Collapse
|
3
|
Meyiah A, Khan FI, Alfaki DA, Murshed K, Raza A, Elkord E. The colorectal cancer microenvironment: Preclinical progress in identifying targets for cancer therapy. Transl Oncol 2025; 53:102307. [PMID: 39904281 PMCID: PMC11846588 DOI: 10.1016/j.tranon.2025.102307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 01/29/2025] [Accepted: 01/30/2025] [Indexed: 02/06/2025] Open
Abstract
Colorectal cancer (CRC) is a common cancer with high mortality rates. Despite progress in treatment, it remains an incurable disease for many patients. In CRC, the tumor microenvironment (TME) plays critical roles in tumor growth, progression, patients' prognosis, and response to treatments. Understanding TME complexities is important for developing effective therapies. In vitro and in vivo preclinical models are critical in understanding the disease, discovering potential targets, and developing effective therapeutics. In this review, we focus on preclinical research studies associated with modulation of the TME in CRC. These models give insights into understanding the role of stroma and immune cell components of the TME in CRC and improve clinical responses, providing insights in novel treatment options. Various studies have focused on targeting the TME in CRC to improve responses to different therapeutic approaches. These include identifying targets for cancer therapies, targeting molecular signaling, and enhancing the efficacy of immunotherapeutic modalities. Furthermore, targeting stromal and angiogenic factors in the TME may provide new therapeutic options. Overall, understanding and targeting the TME in CRC is a promising approach for improving therapeutic outcomes.
Collapse
Affiliation(s)
- Abdo Meyiah
- Department of Biosciences and Bioinformatics & Suzhou Municipal Key Lab of Biomedical Sciences and Translational Immunology, School of Science, Xi'an Jiaotong-Liverpool University, Suzhou, China
| | - Faez Iqbal Khan
- Department of Biosciences and Bioinformatics & Suzhou Municipal Key Lab of Biomedical Sciences and Translational Immunology, School of Science, Xi'an Jiaotong-Liverpool University, Suzhou, China
| | - Dia Aldeen Alfaki
- Department of Haematology, Al-Zaeim Al-Azhari University, Khartoum, Sudan
| | - Khaled Murshed
- Department of Pathology, Hamad Medical Corporation, Doha, Qatar
| | - Afsheen Raza
- College of Health Sciences, Abu Dhabi University, Abu Dhabi, United Arab Emirates
| | - Eyad Elkord
- Department of Biosciences and Bioinformatics & Suzhou Municipal Key Lab of Biomedical Sciences and Translational Immunology, School of Science, Xi'an Jiaotong-Liverpool University, Suzhou, China; College of Health Sciences, Abu Dhabi University, Abu Dhabi, United Arab Emirates; Biomedical Research Center, School of Science, Engineering and Environment, University of Salford, Manchester, UK.
| |
Collapse
|
4
|
Liang F, Wang M, Li J, Guo J. The evolution of S-nitrosylation detection methodology and the role of protein S-nitrosylation in various cancers. Cancer Cell Int 2024; 24:408. [PMID: 39702281 DOI: 10.1186/s12935-024-03568-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 11/07/2024] [Indexed: 12/21/2024] Open
Abstract
S-nitrosylation (SNO) modification, a nitric oxide (NO)-mediated post-translational modification (PTM) of proteins, plays an important role in protein microstructure, degradation, activity, and stability. Due to the presence of reducing agents, the SNO modification process mediated by NO derivatives is often reversible and unstable. This reversible transformation between SNO modification and denitrification often influences the structure, activity, and function of proteins. The reversibility of SNO modifications also poses a challenge when verifying changes in the biological functions of proteins. Moreover, SNO modification of key signaling pathway proteins, such as caspase-3, NF-κB, and Bcl-2, can affect tumor proliferation, invasion, and apoptosis. The SNO-modified proteins play important roles in both promoting and inhibiting cancer, which indirectly confirms the duality and complexity of SNO modification functions. This article reviews the biological significance of various SNO-modified proteins in different cancers, providing a theoretical basis for determining whether the related changes of SNO-modified proteins are universal in cancers. Additionally, this review presents a comprehensive and detailed summary of the evolution of detection methods for SNO-modified proteins, providing a possible methodological basis for future research on SNO-modified proteins.
Collapse
Affiliation(s)
- Feng Liang
- Department of General Surgery, The Second Hospital of Jilin University, Changchun, China
| | - Min Wang
- Department of General Surgery, The Second Hospital of Jilin University, Changchun, China
| | - Jiannan Li
- Department of General Surgery, The Second Hospital of Jilin University, Changchun, China
| | - Jie Guo
- Department of Radiation Oncology, The Second Hospital of Jilin University, Changchun, China.
| |
Collapse
|
5
|
Sharma H, Reeta KH, Sharma U, Suri V, Singh S. AMPA receptor modulation through sequential treatment with perampanel and aniracetam mitigates post-stroke damage in experimental model of ischemic stroke. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2023; 396:3529-3545. [PMID: 37231168 DOI: 10.1007/s00210-023-02544-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 05/18/2023] [Indexed: 05/27/2023]
Abstract
The present study evaluates the effect of modulating α-amino-3-hydroxy-5-methyl-4-isoxazole propionate receptor (AMPAR) by inhibiting them in the acute phase and activating them in the sub-acute phase on post-stroke recovery in middle cerebral artery occlusion (MCAo) model of stroke in rats. After 90 min of MCAo, perampanel (an AMPAR antagonist, 1.5 mg/kg i.p) and aniracetam (an AMPA agonist, 50 mg/kg i.p.) were administered for different durations after MCAo. Later, after obtaining the best time point for the antagonist and the agonist treatment protocols, sequential treatment with perampanel and aniracetam were given, and the effect on neurological damage and post stroke recovery were assessed. Perampanel and aniracetam significantly protected MCAo-induced neurological damage and diminished the infarct percentage. Furthermore, treatment with these study drugs improved the motor coordination and grip strength. Sequential treatment with perampanel and aniracetam reduced the infarct percentage as assessed by MRI. Moreover, these compounds diminished the inflammation via reducing the levels of pro-inflammatory cytokines (TNF-α, IL-1β) and increasing the levels of anti-inflammatory cytokine (IL-10) along with reductions in GFAP expression. Moreover, the neuroprotective markers (BDNF and TrkB) were found to be significantly increased. Levels of apoptotic markers (Bax, cleaved-caspase-3; Bcl2 and TUNEL positive cells) and neuronal damage (MAP-2) were normalized with the AMPA antagonist and agonist treatment. Expressions of GluR1 and GluR2 subunits of AMPAR were significantly enhanced with sequential treatment. The present study thus showed that modulation of AMPAR improves neurobehavioral deficits and reduces the infarct percentage through anti-inflammatory, neuroprotective and anti-apoptotic effects.
Collapse
Affiliation(s)
- Himanshu Sharma
- Department of Pharmacology, All India Institute of Medical Sciences, New Delhi, India
| | - K H Reeta
- Department of Pharmacology, All India Institute of Medical Sciences, New Delhi, India.
| | - Uma Sharma
- Department of NMR, All India Institute of Medical Sciences, New Delhi, India
| | - Vaishali Suri
- Department of Pathology, All India Institute of Medical Sciences, New Delhi, India
| | - Surender Singh
- Department of Pharmacology, All India Institute of Medical Sciences, New Delhi, India
| |
Collapse
|
6
|
Gu J, Chen J, Xiang S, Zhou X, Li J. Intricate confrontation: Research progress and application potential of TRIM family proteins in tumor immune escape. J Adv Res 2023; 54:147-179. [PMID: 36736694 DOI: 10.1016/j.jare.2023.01.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 01/06/2023] [Accepted: 01/12/2023] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Tripartite motif (TRIM) family proteins have more than 80 members and are widely found in various eukaryotic cells. Most TRIM family proteins participate in the ubiquitin-proteasome degradation system as E3-ubiquitin ligases; therefore, they play pivotal regulatory roles in the occurrence and development of tumors, including tumor immune escape. Due to the diversity of functional domains of TRIM family proteins, they can extensively participate in multiple signaling pathways of tumor immune escape through different substrates. In current research and clinical contexts, immune escape has become an urgent problem. The extensive participation of TRIM family proteins in curing tumors or preventing postoperative recurrence and metastasis makes them promising targets. AIM OF REVIEW The aim of the review is to make up for the gap in the current research on TRIM family proteins and tumor immune escape and propose future development directions according to the current progress and problems. KEY SCIENTIFIC CONCEPTS OF REVIEW This up-to-date review summarizes the characteristics and biological functions of TRIM family proteins, discusses the mechanisms of TRIM family proteins involved in tumor immune escape, and highlights the specific mechanism from the level of structure-function-molecule-pathway-phenotype, including mechanisms at the level of protein domains and functions, at the level of molecules and signaling pathways, and at the level of cells and microenvironments. We also discuss the application potential of TRIM family proteins in tumor immunotherapy, such as possible treatment strategies for combination targeting TRIM family protein drugs and checkpoint inhibitors for improving cancer treatment.
Collapse
Affiliation(s)
- Junjie Gu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Jingyi Chen
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Shuaixi Xiang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Xikun Zhou
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu 610041, China.
| | - Jing Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China.
| |
Collapse
|
7
|
Martinez-Marin D, Helmer RA, Kaur G, Washburn RL, Martinez-Zaguilan R, Sennone SR, Dufour JM, Chilton BS. Helicase-like transcription factor (HLTF)-deleted CDX/TME model of colorectal cancer increased transcription of oxidative phosphorylation genes and diverted glycolysis to boost S-glutathionylation in lymphatic intravascular metastatic niches. PLoS One 2023; 18:e0291023. [PMID: 37682902 PMCID: PMC10490896 DOI: 10.1371/journal.pone.0291023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 08/18/2023] [Indexed: 09/10/2023] Open
Abstract
Helicase-like transcription factor (HLTF) also known as SMARCA3, protects genome integrity. A tumor suppressor, HLTF is expressed in tumor cells but not in the tumor microenvironment (TME) in early-stage colorectal cancer (CRC). With disease progression, there is high concordance between epigenetic silencing of HLTF in CRC cells and negligible HLTF expression in the TME. We developed a cell line-derived xenograft (CDX) model and show for the first time that HLTF-deletion in cancer cells and the TME results in metabolic reprogramming that mitigates oxidative stress in lymphatic intravascular metastatic niches. The two metabolic pathways that derive energy from glucose-glycolysis and oxidative phosphorylation (OXPHOS)-are variously utilized by cancer cells depending upon the TME. HIF-1α, a master regulator of glycolysis, was eliminated from a role in reprogramming metabolism to satisfy CDX energetic requirements by RNAseq and spatial transcriptomics. Variability in the gut microbiome, with a putative role in altered metabolism, was also eliminated. HLTF-deleted cancer cells recovered from DNA damage at a transcriptomic level induction of DNA repair and OXPHOS genes linked to an amoeboid-associated phenotype at the tumor border (confocal microscopy). HLTF-deleted cancer and endothelial cells of lymphatic (PDPN) intravascular niches in the TME shared a site-specific protein S-glutathionylation signature (2D DIGE, MALDI-TOF/TOF mass spectrometry) for three glycolytic enzymes (PGK1 Cys379/380, PGAM1 Cys55, ENOA1 Cys119) that diverted glycolysis in support of continued glutathione biosynthesis. The collective absence of HLTF/Hltf from tumor and TME achieved redox homeostasis throughout the CDX and promoted metastasis.
Collapse
Affiliation(s)
- Dalia Martinez-Marin
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, Texas, United States of America
- Department of Immunology and Molecular Microbiology, Texas Tech University-Health Sciences Center, Lubbock, Texas, United States of America
| | - Rebecca A. Helmer
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, Texas, United States of America
- Current address: Garrison Independent School District, Garrison, Texas, United States of America
| | - Gurvinder Kaur
- Department of Medical Education, Texas Tech University Health Sciences Center, Lubbock, Texas, United States of America
| | - Rachel L. Washburn
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, Texas, United States of America
| | - Raul Martinez-Zaguilan
- Department of Cell Physiology and Molecular Biophysics, Texas Tech University Health Sciences Center, Lubbock, Texas, United States of America
| | - Souad R. Sennone
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, Texas, United States of America
| | - Jannette M. Dufour
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, Texas, United States of America
- Texas Center for Comparative Cancer Research, Texas Tech University School of Veterinary Medicine, Amarillo, Texas, United States of America
| | - Beverly S. Chilton
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, Texas, United States of America
- Texas Center for Comparative Cancer Research, Texas Tech University School of Veterinary Medicine, Amarillo, Texas, United States of America
- School of Medicine Cancer Center, Texas Tech University Health Sciences Center, Lubbock, Texas, United States of America
| |
Collapse
|
8
|
Kaur G, Helmer RA, Martinez-Marin D, Sennoune SR, Washburn RL, Martinez-Zaguilan R, Dufour JM, Chilton BS. Helicase-like transcription factor (Hltf)-deletion activates Hmgb1-Rage axis and granzyme A-mediated killing of pancreatic β cells resulting in neonatal lethality. PLoS One 2023; 18:e0286109. [PMID: 37624843 PMCID: PMC10456192 DOI: 10.1371/journal.pone.0286109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 05/09/2023] [Indexed: 08/27/2023] Open
Abstract
Epigenetic mechanisms are integral to pancreatic β cell function. Promoter hypermethylation of the helicase like-transcription factor (HLTF) gene-a component of the cellular DNA damage response that contributes to genome stability-has been implicated in age-associated changes in β cells. To study HLTF, we generated global and β cell-specific (β) Hltf knockout (KO) immune competent (IC) and immune deficient (ID) Rag2-/IL2- mice. IC global and β Hltf KO mice were neonatal lethal whereas ID global and β Hltf KO newborn mice had normal survival. This focused our investigation on the effects of Rag2 interruption with common gamma chain interruption on β cell function/survival. Three-way transcriptomic (RNAseq) analyses of whole pancreata from IC and ID newborn β Hltf KO and wild type (Hltf +/+) controls combined with spatially resolved transcriptomic analysis of formalin fixed paraffin embedded tissue, immunohistochemistry and laser scanning confocal microscopy showed DNA damage caused by β Hltf KO in IC mice upregulated the Hmgb1-Rage axis and a gene signature for innate immune cells. Perforin-delivered granzyme A (GzmA) activation of DNase, Nme1, showed damaged nuclear single-stranded DNA (γH2AX immunostaining). This caspase-independent method of cell death was supported by transcriptional downregulation of Serpinc1 gene that encodes a serine protease inhibitor of GzmA. Increased transcriptional availability of complement receptors C3ar1 and C5ar1 likely invited crosstalk with Hmgb1 to amplify inflammation. This study explores the complex dialog between β cells and immune cells during development. It has implications for the initiation of type I diabetes in utero when altered gene expression that compromises genome stability invokes a localized inflammatory response.
Collapse
Affiliation(s)
- Gurvinder Kaur
- Department of Medical Education, Texas Tech University Health Sciences Center, Lubbock, Texas, United States of America
| | - Rebecca A. Helmer
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, Texas, United States of America
| | - Dalia Martinez-Marin
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, Texas, United States of America
- Department of Immunology and Molecular Microbiology, Texas Tech University-Health Sciences Center, Lubbock, Texas, United States of America
| | - Souad R. Sennoune
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, Texas, United States of America
| | - Rachel L. Washburn
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, Texas, United States of America
| | - Raul Martinez-Zaguilan
- Department of Cell Physiology and Molecular Biophysics, Texas Tech University Health Sciences Center, Lubbock, Texas, United States of America
| | - Jannette M. Dufour
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, Texas, United States of America
| | - Beverly S. Chilton
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, Texas, United States of America
| |
Collapse
|
9
|
Liang F, Wang S, Guo Y, Mu Y, Shang F, Wang M. Proteome profiling of endogenous and potential S-nitrosylation in colorectal cancer. Front Endocrinol (Lausanne) 2023; 14:1153719. [PMID: 37124724 PMCID: PMC10140627 DOI: 10.3389/fendo.2023.1153719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 03/22/2023] [Indexed: 05/02/2023] Open
Abstract
Background As a common cancer with high incidence rate and mortality, colorectal cancer (CRC) is seriously threatening human health. S-nitrosylation (SNO) proteins mediated by nitric oxide (NO) has important implications in the genesis, progression, and apoptosis of CRC. It's worth noting that the SNO proteins also play an important role in the tumor endocrine and metabolic pathways of CRC. Materials and methods In this study, the protein extracts of human tissues and cell lines were treated by biotin switch technology and magnetic beads enrichment. The proteomic results of endogenous and potential SNO proteins were analyzed by mass spectrometry (MS). Through the comparison and analysis of MS results, Gene Ontology (GO) analysis, and literatures, some endogenous and potential SNO proteins were identified in CRC, which were closely related to the tumor endocrine and metabolic pathways, the apoptotic signaling pathways, protein maturation, and other biological processes of the proliferation and apoptosis of CRC cells. Results A total of 19 proteins containing potential or endogenous SNO sites were detected in both human cancer tissue and SW 480 cells. Through the cross validation of MS results, GO analysis, and literatures, several SNO proteins were identified frequently in CRC, such as the actin, cytoplasmic 1 (ACTB), peroxiredoxin-4 (PRDX4), protein S100A8 (S100A8), pyruvate kinase PKM (PKM), glyceraldehyde-3-phosphate dehydrogenase (GAPDH), which were closely related to the tumor endocrine and metabolic pathways and the apoptotic signaling pathways of CRC. Conclusion Different CRC cells and tissues contained potential and endogenous SNO modified proteins. In addition, some SNO proteins could participate in the proliferation, metastasis and apoptosis of CRC by regulating the tumor endocrine and metabolic pathways.
Collapse
Affiliation(s)
- Feng Liang
- Department of General Surgery, The Second Hospital of Jilin University, Changchun, China
| | - Shuang Wang
- Department of Dermatology, The Second Hospital of Jilin University, Changchun, China
| | - Yu Guo
- Department of General Surgery, The Second Hospital of Jilin University, Changchun, China
| | - Yu Mu
- Department of General Surgery, The Second Hospital of Jilin University, Changchun, China
| | - FengJia Shang
- Department of General Surgery, The Second Hospital of Jilin University, Changchun, China
| | - Min Wang
- Department of General Surgery, The Second Hospital of Jilin University, Changchun, China
| |
Collapse
|
10
|
Mass spectrometry analysis of S-nitrosylation of proteins and its role in cancer, cardiovascular and neurodegenerative diseases. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116625] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
11
|
Gutierrez A, Demond H, Brebi P, Ili CG. Novel Methylation Biomarkers for Colorectal Cancer Prognosis. Biomolecules 2021; 11:1722. [PMID: 34827720 PMCID: PMC8615818 DOI: 10.3390/biom11111722] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 11/03/2021] [Accepted: 11/09/2021] [Indexed: 12/24/2022] Open
Abstract
Colorectal cancer (CRC) comprises the third most common cancer worldwide and the second regarding number of deaths. In order to make a correct and early diagnosis to predict metastasis formation, biomarkers are an important tool. Although there are multiple signaling pathways associated with cancer progression, the most recognized are the MAPK pathway, p53 pathway, and TGF-β pathway. These pathways regulate many important functions in the cell, such as cell cycle regulation, proliferation, differentiation, and metastasis formation, among others. Changes in expression in genes belonging to these pathways are drivers of carcinogenesis. Often these expression changes are caused by mutations; however, epigenetic changes, such as DNA methylation, are increasingly acknowledged to play a role in the deregulation of oncogenic genes. This makes DNA methylation changes an interesting biomarkers in cancer. Among the newly identified biomarkers for CRC metastasis INHBB, SMOC2, BDNF, and TBRG4 are included, all of which are highly deregulated by methylation and closely associated with metastasis. The identification of such biomarkers in metastasis of CRC may allow a better treatment and early identification of cancer formation in order to perform better diagnostics and improve the life expectancy.
Collapse
Affiliation(s)
| | | | - Priscilla Brebi
- Millennium Institute on Immunology and Immunotherapy, Laboratory of Integrative Biology (LIBi), Centro de Excelencia en Medicina Traslacional (CEMT), Scientific and Technological Bioresource Nucleus (BIOREN), Universidad de La Frontera, Temuco 4810296, Chile; (A.G.); (H.D.)
| | - Carmen Gloria Ili
- Millennium Institute on Immunology and Immunotherapy, Laboratory of Integrative Biology (LIBi), Centro de Excelencia en Medicina Traslacional (CEMT), Scientific and Technological Bioresource Nucleus (BIOREN), Universidad de La Frontera, Temuco 4810296, Chile; (A.G.); (H.D.)
| |
Collapse
|