1
|
Rubio-López A, García-Carmona R, Zarandieta-Román L, Rubio-Navas A, González-Pinto Á, Cardinal-Fernández P. Innovative approaches to pericardiocentesis training: a comparative study of 3D-printed and virtual reality simulation models. Adv Simul (Lond) 2025; 10:19. [PMID: 40186282 PMCID: PMC11971860 DOI: 10.1186/s41077-025-00348-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2024] [Accepted: 03/23/2025] [Indexed: 04/07/2025] Open
Abstract
BACKGROUND Training in invasive procedures like pericardiocentesis is a critical component of medical education but poses significant challenges due to its complexity and infrequent clinical application. Pericardiocentesis is an invasive procedure used to remove excess pericardial fluid from the pericardial sac, typically performed to relieve cardiac tamponade. It requires precise anatomical knowledge, ultrasound guidance, and dexterous needle placement to minimize complications. Simulation-based training, particularly with innovative technologies such as 3D printing and virtual reality (VR), offers accessible and cost-effective solutions. This study compared the effectiveness of 3D-printed mannequins and VR simulations in pericardiocentesis training, focusing on learning outcomes, stress responses, and cognitive load. METHODS Thirty-five final-year medical students participated in this quasi-experimental study, receiving training with both models in separate sessions under the supervision of two experienced instructors. Learning outcomes were evaluated using the objective structured clinical examination (OSCE), while stress responses were assessed via heart rate variability (HRV), a measure of fluctuations in heart rate that reflect stress levels. Perceived cognitive load was measured with the NASA Task Load Index (NASA-TLX). Wilcoxon signed-rank and Friedman tests were used for statistical analysis. RESULTS The 3D-printed mannequin outperformed VR in tasks requiring fine motor skills, such as material handling and drainage placement (Z = - 2.56, p < 0.05; Z = - 2.34, p < 0.05). VR training, however, was associated with lower mental demand and effort (Z = - 2.147, p < 0.05; Z = - 2.356, p < 0.05). Biometric analysis indicated higher stress levels during mannequin-based training (SD1/SD2, chi-square = 14.157, p < 0.01), reflecting its closer replication of real-life clinical conditions. CONCLUSIONS Both 3D-printed mannequins and VR simulations serve as effective tools for pericardiocentesis training, each offering unique advantages. The 3D-printed mannequin supports tactile skill acquisition, while VR enhances cognitive engagement in a low-stress environment. A hybrid approach-beginning with VR and progressing to 3D-printed models-maximizes training outcomes, particularly in resource-limited settings, where affordable simulation tools can improve access to medical education.
Collapse
Affiliation(s)
- Alberto Rubio-López
- Intensive Care Unit, Hospital Universitario HM Montepríncipe, HM Hospitales, Madrid, Spain.
- Facultad de Medicina, Universidad San Pablo-CEU, CEU Universities, Madrid, Spain.
| | - Rodrigo García-Carmona
- Departamento de Tecnologías de La Información, Escuela Politécnica Superior, Universidad San Pablo-CEU, CEU Universities, Madrid, Spain
| | | | | | - Ángel González-Pinto
- Cardiac Surgery Unit, Hospital General Universitario Gregorio Marañón, Madrid, Spain
- Cardiac Surgery Unit, Hospital Universitario HM Montepríncipe, HM Hospitales, Madrid, Spain
| | - Pablo Cardinal-Fernández
- Intensive Care Unit, Hospital Universitario HM Torrelodones, HM Hospitales, Madrid, Spain
- Facultad HM de Ciencias de La Salud de La Universidad Camilo José Cela, Madrid, Spain
| |
Collapse
|
2
|
Seeger P, Kaldis N, Nickel F, Hackert T, Lykoudis PM, Giannou AD. Surgical training simulation modalities in minimally invasive surgery: How to achieve evidence-based curricula by translational research. Am J Surg 2025; 242:116197. [PMID: 39889386 DOI: 10.1016/j.amjsurg.2025.116197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Revised: 12/19/2024] [Accepted: 01/09/2025] [Indexed: 02/03/2025]
Abstract
BACKGROUND Surgery has evolved from a hands-on discipline where skills were acquired via the "learning by doing" principle to a surgical science with attention to patient safety, health care effectiveness and evidence-based research. A variety of simulation modalities have been developed to meet the need for effective resident training. So far, research regarding surgical training for minimally invasive surgery has been extensive but also heterogenous in grade of evidence. METHODS A literature search was conducted to summarize current knowledge about simulation training and to guide research towards evidence-based curricula with translational effects. This was conducted using a variety of terms in PubMed for English articles up to October 2024. Results are presented in a structured narrative review. RESULTS For virtual reality simulators, there is sound evidence for effective training outcomes. The required instruments for the development of minimally invasive surgery curricula combining different simulation modalities to create a clinical benefit are known and published. CONCLUSION Surgeons are the main creators for minimally invasive surgery training curricula and often follow a hands-on oriented approach that leaves out equally important aspects of assessment, evaluation, and feedback. Further high-quality research that includes available evidence in this field promises to improve patient safety in surgical disciplines.
Collapse
Affiliation(s)
- Philipp Seeger
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Nikolaos Kaldis
- 3rd Department of Surgery, Attiko University Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Felix Nickel
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Thilo Hackert
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Panagis M Lykoudis
- 3rd Department of Surgery, Attiko University Hospital, National and Kapodistrian University of Athens, Athens, Greece; Division of Surgery and Interventional Science, University College London (UCL), London, UK.
| | - Anastasios D Giannou
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; Section of Molecular Immunology und Gastroenterology, I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| |
Collapse
|
3
|
Potter A, Munsch C, Watson E, Hopkins E, Kitromili S, O'Neill IC, Larbie J, Niittymaki E, Ramsay C, Burke J, Ralph N. Identifying Research Priorities in Digital Education for Health Care: Umbrella Review and Modified Delphi Method Study. J Med Internet Res 2025; 27:e66157. [PMID: 39969988 PMCID: PMC11888089 DOI: 10.2196/66157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 10/10/2024] [Accepted: 10/29/2024] [Indexed: 02/20/2025] Open
Abstract
BACKGROUND In recent years, the use of digital technology in the education of health care professionals has surged, partly driven by the COVID-19 pandemic. However, there is still a need for focused research to establish evidence of its effectiveness. OBJECTIVE This study aimed to define the gaps in the evidence for the efficacy of digital education and to identify priority areas where future research has the potential to contribute to our understanding and use of digital education. METHODS We used a 2-stage approach to identify research priorities. First, an umbrella review of the recent literature (published between 2020 and 2023) was performed to identify and build on existing work. Second, expert consensus on the priority research questions was obtained using a modified Delphi method. RESULTS A total of 8857 potentially relevant papers were identified. Using the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) methodology, we included 217 papers for full review. All papers were either systematic reviews or meta-analyses. A total of 151 research recommendations were extracted from the 217 papers. These were analyzed, recategorized, and consolidated to create a final list of 63 questions. From these, a modified Delphi process with 42 experts was used to produce the top-five rated research priorities: (1) How do we measure the learning transfer from digital education into the clinical setting? (2) How can we optimize the use of artificial intelligence, machine learning, and deep learning to facilitate education and training? (3) What are the methodological requirements for high-quality rigorous studies assessing the outcomes of digital health education? (4) How does the design of digital education interventions (eg, format and modality) in health professionals' education and training curriculum affect learning outcomes? and (5) How should learning outcomes in the field of health professions' digital education be defined and standardized? CONCLUSIONS This review provides a prioritized list of research gaps in digital education in health care, which will be of use to researchers, educators, education providers, and funding agencies. Additional proposals are discussed regarding the next steps needed to advance this agenda, aiming to promote meaningful and practical research on the use of digital technologies and drive excellence in health care education.
Collapse
Affiliation(s)
- Alison Potter
- Technology Enhanced Learning, NHS England, Southampton, United Kingdom
| | - Chris Munsch
- Technology Enhanced Learning, NHS England, Leeds, United Kingdom
| | - Elaine Watson
- Technology Enhanced Learning, NHS England, Oxford, United Kingdom
| | - Emily Hopkins
- Knowledge Management Service, NHS England, Manchester, United Kingdom
| | - Sofia Kitromili
- Technology Enhanced Learning, NHS England, Southampton, United Kingdom
| | | | - Judy Larbie
- Technology Enhanced Learning, NHS England, London, United Kingdom
| | - Essi Niittymaki
- Technology Enhanced Learning, NHS England, London, United Kingdom
| | - Catriona Ramsay
- Technology Enhanced Learning, NHS England, Newcastle upon Tyne, United Kingdom
| | - Joshua Burke
- Manchester Foundation Trust, Manchester, United Kingdom
| | - Neil Ralph
- Technology Enhanced Learning, NHS England, London, United Kingdom
| |
Collapse
|
4
|
Toni E, Toni E, Fereidooni M, Ayatollahi H. Acceptance and use of extended reality in surgical training: an umbrella review. Syst Rev 2024; 13:299. [PMID: 39633499 PMCID: PMC11616384 DOI: 10.1186/s13643-024-02723-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 11/26/2024] [Indexed: 12/07/2024] Open
Abstract
BACKGROUND Extended reality (XR) technologies which include virtual, augmented, and mixed reality have significant potential in surgical training, because they can help to eliminate the limitations of traditional methods. This umbrella review aimed to investigate factors that influence the acceptance and use of XR in surgical training using the unified theory of acceptance and use of technology (UTAUT) model. METHODS An umbrella review was conducted in 2024 by searching various databases until the end of 2023. Studies were selected based on the predefined eligibility criteria and analyzed using the components of the UTAUT model. The quality and risk of bias of the selected studies were assessed, and the findings were reported descriptively. RESULTS A total of 44 articles were included in this study. In most studies, XR technologies were used for surgical training of orthopedics, neurology, and laparoscopy. Based on the UTAUT model, the findings indicated that XR technologies improved surgical skills and procedural accuracy while simultaneously reducing risks and operating room time (performance expectancy). In terms of effort expectancy, user-friendly systems were accessible for the trainees with various levels of expertise. From a social influence standpoint, XR technologies enhanced learning by providing positive feedback from experienced surgeons during surgical training. In addition, facilitating conditions emphasized the importance of resource availability and addressing technical and financial limitations to maximize the effectiveness of XR technologies in surgical training. CONCLUSIONS XR technologies significantly improve surgical training by increasing skills and procedural accuracy. Although adoption is facilitated by designing user-friendly interfaces and positive social influences, financial and resource challenges must be overcome, too. The successful integration of XR into surgical training necessitates careful curriculum design and resource allocation. Future research should focus on overcoming these barriers, so that XR can fully realize its potential in surgical training.
Collapse
Affiliation(s)
- Esmaeel Toni
- Medical Informatics, Student Research Committee, Iran University of Medical Sciences, Tehran, Iran
| | - Elham Toni
- Health Information Technology, Department of Health Information Sciences, Faculty of Management and Medical Information Sciences, Kerman University of Medical Sciences, Kerman, Iran
| | - Mahsa Fereidooni
- Medical Informatics, Department of Health Information Technology, Urmia University of Medical Sciences, Urmia, Iran
| | - Haleh Ayatollahi
- Medical Informatics, Health Management and Economics Research Center, Health Management Research Institute, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
5
|
Mergen M, Graf N, Meyerheim M. Reviewing the current state of virtual reality integration in medical education - a scoping review. BMC MEDICAL EDUCATION 2024; 24:788. [PMID: 39044186 PMCID: PMC11267750 DOI: 10.1186/s12909-024-05777-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 07/15/2024] [Indexed: 07/25/2024]
Abstract
BACKGROUND In medical education, new technologies like Virtual Reality (VR) are increasingly integrated to enhance digital learning. Originally used to train surgical procedures, now use cases also cover emergency scenarios and non-technical skills like clinical decision-making. This scoping review aims to provide an overview of VR in medical education, including requirements, advantages, disadvantages, as well as evaluation methods and respective study results to establish a foundation for future VR integration into medical curricula. METHODS This review follows the updated JBI methodology for scoping reviews and adheres to the respective PRISMA extension. We included reviews in English or German language from 2012 to March 2022 that examine the use of VR in education for medical and nursing students, registered nurses, and qualified physicians. Data extraction focused on medical specialties, subjects, curricula, technical/didactic requirements, evaluation methods and study outcomes as well as advantages and disadvantages of VR. RESULTS A total of 763 records were identified. After eligibility assessment, 69 studies were included. Nearly half of them were published between 2021 and 2022, predominantly from high-income countries. Most reviews focused on surgical training in laparoscopic and minimally invasive procedures (43.5%) and included studies with qualified physicians as participants (43.5%). Technical, didactic and organisational requirements were highlighted and evaluations covering performance time and quality, skills acquisition and validity, often showed positive outcomes. Accessibility, repeatability, cost-effectiveness, and improved skill development were reported as advantages, while financial challenges, technical limitations, lack of scientific evidence, and potential user discomfort were cited as disadvantages. DISCUSSION Despite a high potential of VR in medical education, there are mandatory requirements for its integration into medical curricula addressing challenges related to finances, technical limitations, and didactic aspects. The reported lack of standardised and validated guidelines for evaluating VR training must be overcome to enable high-quality evidence for VR usage in medical education. Interdisciplinary teams of software developers, AI experts, designers, medical didactics experts and end users are required to design useful VR courses. Technical issues and compromised realism can be mitigated by further technological advancements.
Collapse
Affiliation(s)
- Marvin Mergen
- Department of Pediatric Oncology and Hematology, Faculty of Medicine, Saarland University, Building 9, Kirrberger Strasse 100, 66421, Homburg, Germany.
| | - Norbert Graf
- Department of Pediatric Oncology and Hematology, Faculty of Medicine, Saarland University, Building 9, Kirrberger Strasse 100, 66421, Homburg, Germany
| | - Marcel Meyerheim
- Department of Pediatric Oncology and Hematology, Faculty of Medicine, Saarland University, Building 9, Kirrberger Strasse 100, 66421, Homburg, Germany
| |
Collapse
|
6
|
Abinaya P, Manivannan M. Haptic based fundamentals of laparoscopic surgery simulation for training with objective assessments. Front Robot AI 2024; 11:1363952. [PMID: 38873121 PMCID: PMC11170034 DOI: 10.3389/frobt.2024.1363952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Accepted: 04/30/2024] [Indexed: 06/15/2024] Open
Abstract
Force is crucial for learning psychomotor skills in laparoscopic tissue manipulation. Fundamental laparoscopic surgery (FLS), on the other hand, only measures time and position accuracy. FLS is a commonly used training program for basic laparoscopic training through part tasks. The FLS is employed in most of the laparoscopic training systems, including box trainers and virtual reality (VR) simulators. However, many laparoscopic VR simulators lack force feedback and measure tissue damage solely through visual feedback based on virtual collisions. Few VR simulators that provide force feedback have subjective force metrics. To provide an objective force assessment for haptic skills training in the VR simulators, we extend the FLS part tasks to haptic-based FLS (HFLS), focusing on controlled force exertion. We interface the simulated HFLS part tasks with a customized bi-manual haptic simulator that offers five degrees of freedom (DOF) for force feedback. The proposed tasks are evaluated through face and content validity among laparoscopic surgeons of varying experience levels. The results show that trainees perform better in HFLS tasks. The average Likert score observed for face and content validity is greater than 4.6 ± 0.3 and 4 ± 0.5 for all the part tasks, which indicates the acceptance of the simulator among subjects for its appearance and functionality. Face and content validations show the need to improve haptic realism, which is also observed in existing simulators. To enhance the accuracy of force rendering, we incorporated a laparoscopic tool force model into the simulation. We study the effectiveness of the model through a psychophysical study that measures just noticeable difference (JND) for the laparoscopic gripping task. The study reveals an insignificant decrease in gripping-force JND. A simple linear model could be sufficient for gripper force feedback, and a non-linear LapTool force model does not affect the force perception for the force range of 0.5-2.5 N. Further study is required to understand the usability of the force model in laparoscopic training at a higher force range. Additionally, the construct validity of HFLS will confirm the applicability of the developed simulator to train surgeons with different levels of experience.
Collapse
Affiliation(s)
- P. Abinaya
- Haptics Laboratory, Department of Applied Mechanics and Biomedical Engineering, Indian Institute of Technology Madras, Tamil Nadu, India
| | | |
Collapse
|
7
|
Sarmiento-Altamirano D, Ormaza F, Arroyo MR, Cabrera-Ordoñez C, Valdivieso R, Docksey M, Di Saverio S. Optimizing laparoscopic and robotic skills through simulation in participants with limited or no prior experience: a systematic review and meta-analysis. J Gastrointest Surg 2024; 28:566-576. [PMID: 38583911 DOI: 10.1016/j.gassur.2024.01.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/10/2024] [Accepted: 01/19/2024] [Indexed: 04/09/2024]
Abstract
BACKGROUND Simulation is an innovative tool for developing complex skills required for surgical training. The objective of this study was to determine the advancement of laparoscopic and robotic skills through simulation in participants with limited or no previous experience. METHODS This is a systematic review and meta-analysis of randomized controlled trials (RCTs) in keeping with the Preferred Reporting Items for Systematic Reviews and Meta-analysis guidelines. We conducted searches using MEDLINE (PubMed), Web of Science, Google Scholar, and Cochrane Library. Variables analyzed were study characteristics, participant demographics, and characteristics of the learning program. Our main measures were effectiveness, surgical time, and errors. These were reported using standardized mean difference (SMD) with 95% CI (P < .05). Secondary measures included skill transfer and learning curve. RESULTS A total of 17 RCTs were included and comprised 619 participants: 354 participants (57%) were in the simulation group and 265 (43%) in the control group. Results indicated that laparoscopic simulation effectively enhanced surgical skills (SMD, 0.59 [0.18-1]; P = .004) and was significantly associated with shorter surgical duration (SMD, -1.08 [-1.57 to -0.59]; P < .0001) and a fewer errors made (SMD, -1.91 [-3.13 to -0.70]; P = .002). In the robotic simulation, there was no difference in effectiveness (SMD, 0.17 [-0.19 to 0.52]; P = .36) or surgical time (SMD, 0.27 [-0.86 to 1.39]; P = .64). Furthermore, skills were found to be transferable from simulation to a real-life operating room (P < .05). CONCLUSION Simulation is an effective tool for optimizing laparoscopic skills, even in participants with limited or no previous experience. This approach not only contributes to the reduction of surgical time and errors but also facilitates the transfer of skills to the surgical environment. In contrast, robotic simulation fails to maximize skill development, requiring previous experience in laparoscopy to achieve optimal levels of effectiveness.
Collapse
Affiliation(s)
| | | | | | | | | | - Megan Docksey
- Warwick Medical School, University of Warwick, Coventry, United Kingdom
| | - Salomone Di Saverio
- Department of General Surgery Madonna del Soccorso Hospital, AST Ascoli Piceno, San Benedetto del Tronto, Italy
| |
Collapse
|
8
|
Rahimi AM, Hardon SF, Scholten SR, Bonjer HJ, Daams F. Objective measurement of retention of laparoscopic skills: a prospective cohort study. Int J Surg 2023; 109:723-728. [PMID: 37010141 PMCID: PMC10389389 DOI: 10.1097/js9.0000000000000272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 01/30/2023] [Indexed: 04/04/2023]
Abstract
INTRODUCTION There has been an overall growth of 462% in laparoscopic procedures performed by surgical residents between 2000 and 2018. Therefore, training courses in laparoscopic surgery are advocated in many postgraduate programs. While the immediate effect is determined in some cases, the retention of acquired skills is rarely investigated. The objective of this study was to objectively measure the retention of laparoscopic technical skills to offer a more personalized training program. METHODS First year general surgery residents performed two fundamental laparoscopic skills tasks (Post and Sleeve and the ZigZag loop) on the Lapron box trainer. Assessment was performed before, directly after, and 4 months after completing the basic laparoscopy course. Force, motion, and time were the measured variables. RESULTS A total of 29 participants were included from 12 Dutch training hospitals and 174 trials were analyzed. The 4 months assessment of the Post and Sleeve showed a significant improvement in force ( P= 0.004), motion ( P ≤0.001), and time ( P ≤0.001) compared to the baseline assessment. The same was true for the ZigZag loop: force ( P ≤0.001), motion ( P= 0.005), and time ( P ≤0.001).Compared to the 4 months assessment, skill deterioration was present for the Post and Sleeve in the mean force ( P= 0.046), max impulse ( P= 0.12), and time ( P= 0.002). For the ZigZag loop, skill decay was observed for force ( P= 0.021), motion ( P= 0.015), and time ( P ≤0.001) parameters. CONCLUSION Acquired laparoscopic technical skills decreased 4 months after the basic laparoscopy course. Compared to baseline performance, participants showed significant improvement, however deterioration was observed compared to postcourse measurements. To preserve acquired laparoscopic skills, it is recommended to incorporate maintenance training, preferably with objective parameters, in training curricula.
Collapse
Affiliation(s)
- A. Masie Rahimi
- Department of Surgery, Amsterdam UMC – VU University Medical Center
- Amsterdam Skills Centre for Health Sciences
- Cancer Center Amsterdam, Amsterdam, The Netherlands
| | - Sem F. Hardon
- Department of Surgery, Amsterdam UMC – VU University Medical Center
| | | | - H. Jaap Bonjer
- Department of Surgery, Amsterdam UMC – VU University Medical Center
- Amsterdam Skills Centre for Health Sciences
- Cancer Center Amsterdam, Amsterdam, The Netherlands
| | - Freek Daams
- Department of Surgery, Amsterdam UMC – VU University Medical Center
- Cancer Center Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
9
|
Lee S, Shetty AS, Cavuoto L. Modeling of Learning Processes Using Continuous-Time Markov Chain for Virtual-Reality-Based Surgical Training in Laparoscopic Surgery. IEEE TRANSACTIONS ON LEARNING TECHNOLOGIES 2023; 17:462-473. [PMID: 38617582 PMCID: PMC11013959 DOI: 10.1109/tlt.2023.3236899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/16/2024]
Abstract
Recent usage of Virtual Reality (VR) technology in surgical training has emerged because of its cost-effectiveness, time savings, and cognition-based feedback generation. However, the quantitative evaluation of its effectiveness in training is still not studied thoroughly. This paper demonstrates the effectiveness of a VR-based surgical training simulator in laparoscopic surgery and investigates how stochastic modeling represented as Continuous-time Markov-chain (CTMC) can be used to explicit the training status of the surgeon. By comparing the training in real environments and in VR-based training simulators, the authors also explore the validity of the VR simulator in laparoscopic surgery. The study further aids in establishing learning models of surgeons, supporting continuous evaluation of training processes for the derivation of real-time feedback by CTMC-based modeling.
Collapse
Affiliation(s)
- Seunghan Lee
- Industrial and Systems Engineering Department at Mississippi State University
| | | | - Lora Cavuoto
- Industrial and Systems Engineering at the University at Buffalo, Buffalo, NY, USA
| |
Collapse
|
10
|
Fransson BA. Training residents in minimally invasive surgery; confirming competence or hoping for the best? Vet Surg 2022; 51 Suppl 1:O5-O11. [PMID: 35906954 PMCID: PMC9546116 DOI: 10.1111/vsu.13850] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 06/01/2022] [Accepted: 06/13/2022] [Indexed: 11/30/2022]
Abstract
Background Veterinary minimally invasive surgery (MIS) is rapidly developing, and most surgeons are performing MIS in their clinical practice. The technical skills of presented surgical techniques are increasingly complex. Required training of American College of Veterinary Surgeons (ACVS) surgical residents in soft tissue MIS (laparoscopy/thoracoscopy) are limited to traditional apprentice training. Unfortunately, such training has been found insufficient to create competent MIS surgeons. Aim of the review This review discusses development of MIS training for Doctor of Medicine (M.D.) residents in context of veterinary applicability and investigates comparative evidence for how to best train veterinary residents in soft tissue MIS. Conclusions A structured curriculum, with validated tasks and clear training goals have been found imperative for training success. Such a curriculum includes both didactic sessions and manual skills training, with video tutorials and reading material to inform and motivate the residents. Implications of key findings ACVS residents and diplomates may benefit if a MIS curriculum was developed and made available to all training programs.
Collapse
Affiliation(s)
- Boel A Fransson
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Washington State University, Pullman, Washington, USA
| |
Collapse
|
11
|
Jung C, Wolff G, Wernly B, Bruno RR, Franz M, Schulze PC, Silva JNA, Silva JR, Bhatt DL, Kelm M. Virtual and Augmented Reality in Cardiovascular Care: State-of-the-Art and Future Perspectives. JACC Cardiovasc Imaging 2021; 15:519-532. [PMID: 34656478 DOI: 10.1016/j.jcmg.2021.08.017] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 08/17/2021] [Indexed: 12/19/2022]
Abstract
Applications of virtual reality (VR) and augmented reality (AR) assist both health care providers and patients in cardiovascular education, complementing traditional learning methods. Interventionalists have successfully used VR to plan difficult procedures and AR to facilitate complex interventions. VR/AR has already been used to treat patients, during interventions in rehabilitation programs and in immobilized intensive care patients. There are numerous additional potential applications in the catheterization laboratory. By using AR, interventionalists could combine visual fluoroscopy information projected and registered on the patient body with data derived from preprocedural imaging and live fusion of different imaging modalities such as fluoroscopy with echocardiography. Persistent technical challenges to overcome include the integration of different imaging modalities into VR/AR and the harmonization of data flow and interfaces. Cybersickness might exclude some patients and users from the potential benefits of VR/AR. Critical ethical considerations arise in the application of VR/AR in vulnerable patients. In addition, digital applications must not distract physicians from the patient. It is our duty as physicians to participate in the development of these innovations to ensure a virtual health reality benefit for our patients in a real-world setting. The purpose of this review is to summarize the current and future role of VR and AR in different fields within cardiology, its challenges, and perspectives.
Collapse
Affiliation(s)
- Christian Jung
- Division of Cardiology, Pulmonology, and Vascular Medicine, Medical Faculty, Heinrich-Heine-University, University Hospital Düsseldorf, Düsseldorf, Germany.
| | - Georg Wolff
- Division of Cardiology, Pulmonology, and Vascular Medicine, Medical Faculty, Heinrich-Heine-University, University Hospital Düsseldorf, Düsseldorf, Germany
| | - Bernhard Wernly
- Department of Anesthesiology and Intensive Care, Paracelsus Medical University of Salzburg, Salzburg, Austria; Division of Cardiology, Department of Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Raphael Romano Bruno
- Division of Cardiology, Pulmonology, and Vascular Medicine, Medical Faculty, Heinrich-Heine-University, University Hospital Düsseldorf, Düsseldorf, Germany
| | - Marcus Franz
- Department of Internal Medicine I, Medical Faculty, Friedrich Schiller University Jena, University Hospital Jena, Jena, Germany
| | - P Christian Schulze
- Department of Internal Medicine I, Medical Faculty, Friedrich Schiller University Jena, University Hospital Jena, Jena, Germany
| | - Jennifer N Avari Silva
- Pediatric Cardiology Division, Department of Pediatrics, Washington University in Saint Louis, School of Medicine, Saint Louis, Missouri, USA; Department of Biomedical Engineering, McKelvey School of Engineering, Washington University in Saint Louis, Saint Louis, Missouri, USA; SentiAR, Saint Louis, Missouri, USA
| | - Jonathan R Silva
- Department of Biomedical Engineering, McKelvey School of Engineering, Washington University in Saint Louis, Saint Louis, Missouri, USA; SentiAR, Saint Louis, Missouri, USA
| | - Deepak L Bhatt
- Brigham and Women's Hospital Heart and Vascular Center, Harvard Medical School, Boston, Massachusetts, USA. https://twitter.com/DLBHATTMD
| | - Malte Kelm
- Division of Cardiology, Pulmonology, and Vascular Medicine, Medical Faculty, Heinrich-Heine-University, University Hospital Düsseldorf, Düsseldorf, Germany; Cardiovascular Research Institute Duesseldorf, Düsseldorf, Germany
| |
Collapse
|