1
|
Zossou VBS, Rodrigue Gnangnon FH, Biaou O, de Vathaire F, Allodji RS, Ezin EC. Automatic Diagnosis of Hepatocellular Carcinoma and Metastases Based on Computed Tomography Images. JOURNAL OF IMAGING INFORMATICS IN MEDICINE 2025; 38:873-886. [PMID: 39227538 PMCID: PMC11950545 DOI: 10.1007/s10278-024-01192-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 06/26/2024] [Accepted: 06/27/2024] [Indexed: 09/05/2024]
Abstract
Liver cancer, a leading cause of cancer mortality, is often diagnosed by analyzing the grayscale variations in liver tissue across different computed tomography (CT) images. However, the intensity similarity can be strong, making it difficult for radiologists to visually identify hepatocellular carcinoma (HCC) and metastases. It is crucial for the management and prevention strategies to accurately differentiate between these two liver cancers. This study proposes an automated system using a convolutional neural network (CNN) to enhance diagnostic accuracy to detect HCC, metastasis, and healthy liver tissue. This system incorporates automatic segmentation and classification. The liver lesions segmentation model is implemented using residual attention U-Net. A 9-layer CNN classifier implements the lesions classification model. Its input is the combination of the results of the segmentation model with original images. The dataset included 300 patients, with 223 used to develop the segmentation model and 77 to test it. These 77 patients also served as inputs for the classification model, consisting of 20 HCC cases, 27 with metastasis, and 30 healthy. The system achieved a mean Dice score of 87.65 % in segmentation and a mean accuracy of 93.97 % in classification, both in the test phase. The proposed method is a preliminary study with great potential in helping radiologists diagnose liver cancers.
Collapse
Affiliation(s)
- Vincent-Béni Sèna Zossou
- Université Paris-Saclay, UVSQ, Univ. Paris-Sud, CESP, Équipe Radiation Epidemiology, 94805, Villejuif, France.
- Centre de recherche en épidémiologie et santé des populations (CESP), U1018, Institut national de la santé et de la recherche médicale (INSERM), 94805, Villejuif, France.
- Department of Clinical Research, Radiation Epidemiology Team, Gustave Roussy, 94805, Villejuif, France.
- Ecole Doctorale Sciences de l'Ingénieur, Université d'Abomey-Calavi, BP 526, Abomey-Calavi, Benin.
| | | | - Olivier Biaou
- Faculté des Sciences de la Santé, Université d'Abomey-Calavi, BP 188, Cotonou, Benin
- Department of Radiology, CNHU-HKM, 1213, Cotonou, Benin
| | - Florent de Vathaire
- Université Paris-Saclay, UVSQ, Univ. Paris-Sud, CESP, Équipe Radiation Epidemiology, 94805, Villejuif, France
- Centre de recherche en épidémiologie et santé des populations (CESP), U1018, Institut national de la santé et de la recherche médicale (INSERM), 94805, Villejuif, France
- Department of Clinical Research, Radiation Epidemiology Team, Gustave Roussy, 94805, Villejuif, France
| | - Rodrigue S Allodji
- Université Paris-Saclay, UVSQ, Univ. Paris-Sud, CESP, Équipe Radiation Epidemiology, 94805, Villejuif, France
- Centre de recherche en épidémiologie et santé des populations (CESP), U1018, Institut national de la santé et de la recherche médicale (INSERM), 94805, Villejuif, France
- Department of Clinical Research, Radiation Epidemiology Team, Gustave Roussy, 94805, Villejuif, France
| | - Eugène C Ezin
- Institut de Formation et de Recherche en Informatique, Université d'Abomey-Calavi, BP 526, Cotonou, Benin
- Institut de Mathématiques et de Sciences Physiques, Université d'Abomey-Calavi, 613, Dangbo, Benin
| |
Collapse
|
2
|
Chatzipanagiotou OP, Loukas C, Vailas M, Machairas N, Kykalos S, Charalampopoulos G, Filippiadis D, Felekouras E, Schizas D. Artificial intelligence in hepatocellular carcinoma diagnosis: a comprehensive review of current literature. J Gastroenterol Hepatol 2024; 39:1994-2005. [PMID: 38923550 DOI: 10.1111/jgh.16663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 04/26/2024] [Accepted: 06/07/2024] [Indexed: 06/28/2024]
Abstract
BACKGROUND AND AIM Hepatocellular carcinoma (HCC) diagnosis mainly relies on its pathognomonic radiological profile, obviating the need for biopsy. The project of incorporating artificial intelligence (AI) techniques in HCC aims to improve the performance of image recognition. Herein, we thoroughly analyze and evaluate proposed AI models in the field of HCC diagnosis. METHODS A comprehensive review of the literature was performed utilizing MEDLINE/PubMed and Web of Science databases with the end of search date being the 30th of September 2023. The MESH terms "Artificial Intelligence," "Liver Cancer," "Hepatocellular Carcinoma," "Machine Learning," and "Deep Learning" were searched in the title and/or abstract. All references of the obtained articles were also evaluated for any additional information. RESULTS Our search resulted in 183 studies meeting our inclusion criteria. Across all diagnostic modalities, reported area under the curve (AUC) of most developed models surpassed 0.900. A B-mode US and a contrast-enhanced US model achieved AUCs of 0.947 and 0.957, respectively. Regarding the more challenging task of HCC diagnosis, a 2021 deep learning model, trained with CT scans, classified hepatic malignant lesions with an AUC of 0.986. Finally, a MRI machine learning model developed in 2021 displayed an AUC of 0.975 when differentiating small HCCs from benign lesions, while another MRI-based model achieved HCC diagnosis with an AUC of 0.970. CONCLUSIONS AI tools may lead to significant improvement in diagnostic management of HCC. Many models fared better or comparable to experienced radiologists while proving capable of elevating radiologists' accuracy, demonstrating promising results for AI implementation in HCC-related diagnostic tasks.
Collapse
Affiliation(s)
- Odysseas P Chatzipanagiotou
- First Department of Surgery, National and Kapodistrian University of Athens, Laikon General Hospital, Athens, Greece
| | - Constantinos Loukas
- Laboratory of Medical Physics, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Michail Vailas
- First Department of Surgery, National and Kapodistrian University of Athens, Laikon General Hospital, Athens, Greece
| | - Nikolaos Machairas
- Second Department of Propaedeutic Surgery, National and Kapodistrian University of Athens, Laikon General Hospital, Athens, Greece
| | - Stylianos Kykalos
- Second Department of Propaedeutic Surgery, National and Kapodistrian University of Athens, Laikon General Hospital, Athens, Greece
| | - Georgios Charalampopoulos
- Second Department of Radiology, National and Kapodistrian University of Athens, Attikon University Hospital, Athens, Greece
| | - Dimitrios Filippiadis
- Second Department of Radiology, National and Kapodistrian University of Athens, Attikon University Hospital, Athens, Greece
| | - Evangellos Felekouras
- First Department of Surgery, National and Kapodistrian University of Athens, Laikon General Hospital, Athens, Greece
| | - Dimitrios Schizas
- First Department of Surgery, National and Kapodistrian University of Athens, Laikon General Hospital, Athens, Greece
| |
Collapse
|
3
|
Chaiteerakij R, Ariyaskul D, Kulkraisri K, Apiparakoon T, Sukcharoen S, Chaichuen O, Pensuwan P, Tiyarattanachai T, Rerknimitr R, Marukatat S. Artificial intelligence for ultrasonographic detection and diagnosis of hepatocellular carcinoma and cholangiocarcinoma. Sci Rep 2024; 14:20617. [PMID: 39232086 PMCID: PMC11375009 DOI: 10.1038/s41598-024-71657-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 08/29/2024] [Indexed: 09/06/2024] Open
Abstract
The effectiveness of ultrasonography (USG) in liver cancer screening is partly constrained by the operator's expertise. We aimed to develop and evaluate an AI-assisted system for detecting and classifying focal liver lesions (FLLs) from USG images. This retrospective study incorporated 26,288 USG images from 5444 patients to train YOLOv5 model for FLLs detection and classification of seven different types of FLLs, including hepatocellular carcinoma (HCC), cholangiocarcinoma (CCA), focal fatty infiltration, focal fatty sparing (FFS), cyst, hemangioma, and regenerative nodules. AI model performance was assessed for detection and diagnosis of the FLLs on a per-image and per-lesion basis. The AI achieved an overall FLLs detection rate of 84.8% (95%CI:83.3-86.4), with consistent performance for FLLs ≤ 1 cm and > 1 cm. It also exhibited sensitivity and specificity for distinguishing malignant FLLs from other benign FLLs at 97.0% (95%CI:95. 9-98.2) and 97.0% (95%CI:95.9-98.1), respectively. Among specific FLL types, CCA detection rate was at 92.2% (95%CI:88.0-96.4), followed by FFS at 89.7% (95%CI:87.1-92.3), and HCC at 82.3% (95%CI:77.1-87.5). The specificities and NPVs for regenerative nodules were 100% and 99.9% (95%CI:99.8-100.0), respectively. Our AI model can potentially assist physicians in FLLs detection and diagnosis during USG examinations. Further external validation is needed for clinical application.
Collapse
Affiliation(s)
- Roongruedee Chaiteerakij
- Center of Excellence for Innovation and Endoscopy in Gastrointestinal Oncology, Division of Gastroenterology, Department of Medicine, Faculty of Medicine, Chulalongkorn University, 1873 Rama IV Road, Patumwan, Bangkok, 10330, Thailand.
| | | | | | - Terapap Apiparakoon
- Center of Excellence for Innovation and Endoscopy in Gastrointestinal Oncology, Division of Gastroenterology, Department of Medicine, Faculty of Medicine, Chulalongkorn University, 1873 Rama IV Road, Patumwan, Bangkok, 10330, Thailand
| | - Sasima Sukcharoen
- Center of Excellence for Innovation and Endoscopy in Gastrointestinal Oncology, Division of Gastroenterology, Department of Medicine, Faculty of Medicine, Chulalongkorn University, 1873 Rama IV Road, Patumwan, Bangkok, 10330, Thailand
| | - Oracha Chaichuen
- Center of Excellence for Innovation and Endoscopy in Gastrointestinal Oncology, Division of Gastroenterology, Department of Medicine, Faculty of Medicine, Chulalongkorn University, 1873 Rama IV Road, Patumwan, Bangkok, 10330, Thailand
| | | | | | - Rungsun Rerknimitr
- Center of Excellence for Innovation and Endoscopy in Gastrointestinal Oncology, Division of Gastroenterology, Department of Medicine, Faculty of Medicine, Chulalongkorn University, 1873 Rama IV Road, Patumwan, Bangkok, 10330, Thailand
| | - Sanparith Marukatat
- Image Processing and Understanding Team, Artificial Intelligence Research Group, National Electronics and Computer Technology Center, Pathum Thani, Thailand
| |
Collapse
|
4
|
Wang L, Fatemi M, Alizad A. Artificial intelligence techniques in liver cancer. Front Oncol 2024; 14:1415859. [PMID: 39290245 PMCID: PMC11405163 DOI: 10.3389/fonc.2024.1415859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 08/15/2024] [Indexed: 09/19/2024] Open
Abstract
Hepatocellular Carcinoma (HCC), the most common primary liver cancer, is a significant contributor to worldwide cancer-related deaths. Various medical imaging techniques, including computed tomography, magnetic resonance imaging, and ultrasound, play a crucial role in accurately evaluating HCC and formulating effective treatment plans. Artificial Intelligence (AI) technologies have demonstrated potential in supporting physicians by providing more accurate and consistent medical diagnoses. Recent advancements have led to the development of AI-based multi-modal prediction systems. These systems integrate medical imaging with other modalities, such as electronic health record reports and clinical parameters, to enhance the accuracy of predicting biological characteristics and prognosis, including those associated with HCC. These multi-modal prediction systems pave the way for predicting the response to transarterial chemoembolization and microvascular invasion treatments and can assist clinicians in identifying the optimal patients with HCC who could benefit from interventional therapy. This paper provides an overview of the latest AI-based medical imaging models developed for diagnosing and predicting HCC. It also explores the challenges and potential future directions related to the clinical application of AI techniques.
Collapse
Affiliation(s)
- Lulu Wang
- Department of Engineering, School of Technology, Reykjavık University, Reykjavík, Iceland
- Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine and Science, Rochester, MN, United States
| | - Mostafa Fatemi
- Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine and Science, Rochester, MN, United States
| | - Azra Alizad
- Department of Radiology, Mayo Clinic College of Medicine and Science, Rochester, MN, United States
| |
Collapse
|
5
|
Salehi MA, Harandi H, Mohammadi S, Shahrabi Farahani M, Shojaei S, Saleh RR. Diagnostic Performance of Artificial Intelligence in Detection of Hepatocellular Carcinoma: A Meta-analysis. JOURNAL OF IMAGING INFORMATICS IN MEDICINE 2024; 37:1297-1311. [PMID: 38438694 PMCID: PMC11300422 DOI: 10.1007/s10278-024-01058-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 02/18/2024] [Accepted: 02/19/2024] [Indexed: 03/06/2024]
Abstract
Due to the increasing interest in the use of artificial intelligence (AI) algorithms in hepatocellular carcinoma detection, we performed a systematic review and meta-analysis to pool the data on diagnostic performance metrics of AI and to compare them with clinicians' performance. A search in PubMed and Scopus was performed in January 2024 to find studies that evaluated and/or validated an AI algorithm for the detection of HCC. We performed a meta-analysis to pool the data on the metrics of diagnostic performance. Subgroup analysis based on the modality of imaging and meta-regression based on multiple parameters were performed to find potential sources of heterogeneity. The risk of bias was assessed using Multivariable Prediction Model for Individual Prognosis or Diagnosis (TRIPOD) and Prediction Model Study Risk of Bias Assessment Tool (PROBAST) reporting guidelines. Out of 3177 studies screened, 44 eligible studies were included. The pooled sensitivity and specificity for internally validated AI algorithms were 84% (95% CI: 81,87) and 92% (95% CI: 90,94), respectively. Externally validated AI algorithms had a pooled sensitivity of 85% (95% CI: 78,89) and specificity of 84% (95% CI: 72,91). When clinicians were internally validated, their pooled sensitivity was 70% (95% CI: 60,78), while their pooled specificity was 85% (95% CI: 77,90). This study implies that AI can perform as a diagnostic supplement for clinicians and radiologists by screening images and highlighting regions of interest, thus improving workflow.
Collapse
Affiliation(s)
| | - Hamid Harandi
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Research Center for Antibiotic Stewardship and Antimicrobial Resistance, Imam Khomeini Hospital Complex, Tehran University of Medical Sciences, Tehran, Iran
| | - Soheil Mohammadi
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| | | | - Shayan Shojaei
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Ramy R Saleh
- Department of Oncology, McGill University, Montreal, QC, H3A 0G4, Canada
- Division of Medical Oncology, McGill University Health Centre, Montreal, QC, H4A 3J1, Canada
| |
Collapse
|
6
|
Li Y, Fan N, He X, Zhu J, Zhang J, Lu L. Research Progress in Predicting Hepatocellular Carcinoma with Portal Vein Tumour Thrombus in the Era of Artificial Intelligence. J Hepatocell Carcinoma 2024; 11:1429-1438. [PMID: 39050809 PMCID: PMC11268770 DOI: 10.2147/jhc.s474922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 06/24/2024] [Indexed: 07/27/2024] Open
Abstract
Hepatocellular Carcinoma (HCC) is a condition associated with significant morbidity and mortality. The presence of Portal Vein Tumour Thrombus (PVTT) typically signifies advanced disease stages and poor prognosis. Artificial intelligence (AI), particularly Machine Learning (ML) and Deep Learning (DL), has emerged as a promising tool for extracting quantitative data from medical images. AI is increasingly integrated into the imaging omics workflow and has become integral to various medical disciplines. This paper provides a comprehensive review of the mechanisms underlying the formation and progression of PVTT, as well as its impact on clinical management and prognosis. Additionally, it outlines the advancements in AI for predicting the diagnosis of HCC and the development of PVTT. The limitations of existing studies are critically evaluated, and potential future research directions in the realm of imaging for the diagnostic prediction of HCC and PVTT are discussed, with the ultimate goal of enhancing survival outcomes for PVTT patients.
Collapse
Affiliation(s)
- Yaduo Li
- Medical Imaging Department, Zhuhai Clinical Medical College of Jinan University (Zhuhai People’s Hospital), Zhuhai, People’s Republic of China
| | - Ningning Fan
- Medical Imaging Department, Zhuhai Clinical Medical College of Jinan University (Zhuhai People’s Hospital), Zhuhai, People’s Republic of China
| | - Xu He
- Department of Interventional Medicine, Guangzhou First People’s Hospital, Guangzhou, People’s Republic of China
| | - Jianjun Zhu
- R&D Department, Hanglok-Tech Co., Ltd., Hengqin, People’s Republic of China; Center of Interventional Radiology & Vascular Surgery, Department of Radiology, Zhongda Hospital, Medical School, Southeast University, Nanjing, People’s Republic of China
| | - Jie Zhang
- Medical Imaging Department, Zhuhai Clinical Medical College of Jinan University (Zhuhai People’s Hospital), Zhuhai, People’s Republic of China
| | - Ligong Lu
- Medical Imaging Department, Zhuhai Clinical Medical College of Jinan University (Zhuhai People’s Hospital), Zhuhai, People’s Republic of China
- Department of Interventional Medicine, Guangzhou First People’s Hospital, Guangzhou, People’s Republic of China
| |
Collapse
|
7
|
Waldner MJ, Strobel D. Ultrasound Diagnosis of Hepatocellular Carcinoma: Is the Future Defined by Artificial Intelligence? ULTRASCHALL IN DER MEDIZIN (STUTTGART, GERMANY : 1980) 2024; 45:8-12. [PMID: 38301631 DOI: 10.1055/a-2171-2674] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2024]
Affiliation(s)
| | - Deike Strobel
- Medical Clinic 1, Erlangen University Hospital, Erlangen, Germany
| |
Collapse
|
8
|
Tangruangkiat S, Chaiwongkot N, Pamarapa C, Rawangwong T, Khunnarong A, Chainarong C, Sathapanawanthana P, Hiranrat P, Keerativittayayut R, Sungkarat W, Phonlakrai M. Diagnosis of focal liver lesions from ultrasound images using a pretrained residual neural network. J Appl Clin Med Phys 2024; 25:e14210. [PMID: 37991141 PMCID: PMC10795428 DOI: 10.1002/acm2.14210] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 09/18/2023] [Accepted: 11/07/2023] [Indexed: 11/23/2023] Open
Abstract
OBJECTIVE This study aims to develop a ResNet50-based deep learning model for focal liver lesion (FLL) classification in ultrasound images, comparing its performance with other models and prior research. METHODOLOGY We retrospectively collected 581 ultrasound images from the Chulabhorn Hospital's HCC surveillance and screening project (2010-2018). The dataset comprised five classes: non-FLL, hepatic cyst (Cyst), hemangioma (HMG), focal fatty sparing (FFS), and hepatocellular carcinoma (HCC). We conducted 5-fold cross-validation after random dataset partitioning, enhancing training data with data augmentation. Our models used modified pre-trained ResNet50, GGN, ResNet18, and VGG16 architectures. Model performance, assessed via confusion matrices for sensitivity, specificity, and accuracy, was compared across models and with prior studies. RESULTS ResNet50 outperformed other models, achieving a 5-fold cross-validation accuracy of 87 ± 2.2%. While VGG16 showed similar performance, it exhibited higher uncertainty. In the testing phase, the pretrained ResNet50 excelled in classifying non-FLL, cysts, and FFS. To compare with other research, ResNet50 surpassed the prior methods like two-layered feed-forward neural networks (FFNN) and CNN+ReLU in FLL diagnosis. CONCLUSION ResNet50 exhibited good performance in FLL diagnosis, especially for HCC classification, suggesting its potential for developing computer-aided FLL diagnosis. However, further refinement is required for HCC and HMG classification in future studies.
Collapse
Affiliation(s)
- Sutthirak Tangruangkiat
- School of Radiological Technology, Faculty of Health Science TechnologyChulabhorn Royal AcademyBangkokThailand
| | - Napatsorn Chaiwongkot
- School of Radiological Technology, Faculty of Health Science TechnologyChulabhorn Royal AcademyBangkokThailand
| | - Chayanon Pamarapa
- School of Radiological Technology, Faculty of Health Science TechnologyChulabhorn Royal AcademyBangkokThailand
| | - Thanatcha Rawangwong
- School of Radiological Technology, Faculty of Health Science TechnologyChulabhorn Royal AcademyBangkokThailand
| | - Araya Khunnarong
- School of Radiological Technology, Faculty of Health Science TechnologyChulabhorn Royal AcademyBangkokThailand
| | - Chanyanuch Chainarong
- School of Radiological Technology, Faculty of Health Science TechnologyChulabhorn Royal AcademyBangkokThailand
| | - Preeyanun Sathapanawanthana
- School of Radiological Technology, Faculty of Health Science TechnologyChulabhorn Royal AcademyBangkokThailand
| | - Pantajaree Hiranrat
- Sonographer School, Faculty of Health Science TechnologyChulabhorn Royal AcademyBangkokThailand
| | - Ruedeerat Keerativittayayut
- School of Radiological Technology, Faculty of Health Science TechnologyChulabhorn Royal AcademyBangkokThailand
| | - Witaya Sungkarat
- School of Radiological Technology, Faculty of Health Science TechnologyChulabhorn Royal AcademyBangkokThailand
| | - Monchai Phonlakrai
- School of Radiological Technology, Faculty of Health Science TechnologyChulabhorn Royal AcademyBangkokThailand
| |
Collapse
|
9
|
Zhao Y, Zheng S, Cai N, Zhang Q, Zhong H, Zhou Y, Zhang B, Wang G. Utility of Artificial Intelligence for Real-Time Anatomical Landmark Identification in Ultrasound-Guided Thoracic Paravertebral Block. J Digit Imaging 2023; 36:2051-2059. [PMID: 37291383 PMCID: PMC10501964 DOI: 10.1007/s10278-023-00851-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 05/03/2023] [Accepted: 05/08/2023] [Indexed: 06/10/2023] Open
Abstract
Thoracic paravertebral block (TPVB) is a common method of inducing perioperative analgesia in thoracic and abdominal surgery. Identifying anatomical structures in ultrasound images is very important especially for inexperienced anesthesiologists who are unfamiliar with the anatomy. Therefore, our aim was to develop an artificial neural network (ANN) to automatically identify (in real-time) anatomical structures in ultrasound images of TPVB. This study is a retrospective study using ultrasound scans (both video and standard still images) that we acquired. We marked the contours of the paravertebral space (PVS), lung, and bone in the TPVB ultrasound image. Based on the labeled ultrasound images, we used the U-net framework to train and create an ANN that enabled real-time identification of important anatomical structures in ultrasound images. A total of 742 ultrasound images were acquired and labeled in this study. In this ANN, the Intersection over Union (IoU) and Dice similarity coefficient (DSC or Dice coefficient) of the paravertebral space (PVS) were 0.75 and 0.86, respectively, the IoU and DSC of the lung were 0.85 and 0.92, respectively, and the IoU and DSC of the bone were 0.69 and 0.83, respectively. The accuracies of the PVS, lung, and bone were 91.7%, 95.4%, and 74.3%, respectively. For tenfold cross validation, the median interquartile range for PVS IoU and DSC was 0.773 and 0.87, respectively. There was no significant difference in the scores for the PVS, lung, and bone between the two anesthesiologists. We developed an ANN for the real-time automatic identification of thoracic paravertebral anatomy. The performance of the ANN was highly satisfactory. We conclude that AI has good prospects for use in TPVB. Clinical registration number: ChiCTR2200058470 (URL: http://www.chictr.org.cn/showproj.aspx?proj=152839 ; registration date: 2022-04-09).
Collapse
Affiliation(s)
- Yaoping Zhao
- Department of Anesthesiology, Beijing Jishuitan Hospital, No. 31 of Xinjiekou East Street, Xicheng District, Beijing, 100035, China
| | - Shaoqiang Zheng
- Department of Anesthesiology, Beijing Jishuitan Hospital, No. 31 of Xinjiekou East Street, Xicheng District, Beijing, 100035, China
| | - Nan Cai
- Department of Anesthesiology, Beijing Jishuitan Hospital, No. 31 of Xinjiekou East Street, Xicheng District, Beijing, 100035, China
| | - Qiang Zhang
- Department of Thoracic Surgery, Beijing Jishuitan Hospital, Beijing, 100035, China
| | - Hao Zhong
- Department of Anesthesiology, Beijing Jishuitan Hospital, No. 31 of Xinjiekou East Street, Xicheng District, Beijing, 100035, China
| | - Yan Zhou
- Department of Anesthesiology, Beijing Jishuitan Hospital, No. 31 of Xinjiekou East Street, Xicheng District, Beijing, 100035, China
| | - Bo Zhang
- AMIT Co., Ltd., Wuxi , Jiangsu, 214000, China
| | - Geng Wang
- Department of Anesthesiology, Beijing Jishuitan Hospital, No. 31 of Xinjiekou East Street, Xicheng District, Beijing, 100035, China.
| |
Collapse
|
10
|
Vetter M, Waldner MJ, Zundler S, Klett D, Bocklitz T, Neurath MF, Adler W, Jesper D. Artificial intelligence for the classification of focal liver lesions in ultrasound - a systematic review. ULTRASCHALL IN DER MEDIZIN (STUTTGART, GERMANY : 1980) 2023; 44:395-407. [PMID: 37001563 DOI: 10.1055/a-2066-9372] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Focal liver lesions are detected in about 15% of abdominal ultrasound examinations. The diagnosis of frequent benign lesions can be determined reliably based on the characteristic B-mode appearance of cysts, hemangiomas, or typical focal fatty changes. In the case of focal liver lesions which remain unclear on B-mode ultrasound, contrast-enhanced ultrasound (CEUS) increases diagnostic accuracy for the distinction between benign and malignant liver lesions. Artificial intelligence describes applications that try to emulate human intelligence, at least in subfields such as the classification of images. Since ultrasound is considered to be a particularly examiner-dependent technique, the application of artificial intelligence could be an interesting approach for an objective and accurate diagnosis. In this systematic review we analyzed how artificial intelligence can be used to classify the benign or malignant nature and entity of focal liver lesions on the basis of B-mode or CEUS data. In a structured search on Scopus, Web of Science, PubMed, and IEEE, we found 52 studies that met the inclusion criteria. Studies showed good diagnostic performance for both the classification as benign or malignant and the differentiation of individual tumor entities. The results could be improved by inclusion of clinical parameters and were comparable to those of experienced investigators in terms of diagnostic accuracy. However, due to the limited spectrum of lesions included in the studies and a lack of independent validation cohorts, the transfer of the results into clinical practice is limited.
Collapse
Affiliation(s)
- Marcel Vetter
- Department of Internal Medicine 1, Erlangen University Hospital Department of Medicine 1 Gastroenterology Endocrinology and Pneumology, Erlangen, Germany
| | - Maximilian J Waldner
- Department of Internal Medicine 1, Erlangen University Hospital Department of Medicine 1 Gastroenterology Endocrinology and Pneumology, Erlangen, Germany
| | - Sebastian Zundler
- Department of Internal Medicine 1, Erlangen University Hospital Department of Medicine 1 Gastroenterology Endocrinology and Pneumology, Erlangen, Germany
| | - Daniel Klett
- Department of Internal Medicine 1, Erlangen University Hospital Department of Medicine 1 Gastroenterology Endocrinology and Pneumology, Erlangen, Germany
| | - Thomas Bocklitz
- Institute of Physical Chemistry and Abbe Center of Photonics, Friedrich-Schiller-Universitat Jena, Jena, Germany
- Leibniz-Institute of Photonic Technology, Friedrich Schiller University Jena, Jena, Germany
| | - Markus F Neurath
- Department of Internal Medicine 1, Erlangen University Hospital Department of Medicine 1 Gastroenterology Endocrinology and Pneumology, Erlangen, Germany
| | - Werner Adler
- Department of Medical Informatics, Biometry and Epidemiology, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany
| | - Daniel Jesper
- Department of Internal Medicine 1, Erlangen University Hospital Department of Medicine 1 Gastroenterology Endocrinology and Pneumology, Erlangen, Germany
| |
Collapse
|
11
|
Singh S, Hoque S, Zekry A, Sowmya A. Radiological Diagnosis of Chronic Liver Disease and Hepatocellular Carcinoma: A Review. J Med Syst 2023; 47:73. [PMID: 37432493 PMCID: PMC10335966 DOI: 10.1007/s10916-023-01968-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 07/02/2023] [Indexed: 07/12/2023]
Abstract
Medical image analysis plays a pivotal role in the evaluation of diseases, including screening, surveillance, diagnosis, and prognosis. Liver is one of the major organs responsible for key functions of metabolism, protein and hormone synthesis, detoxification, and waste excretion. Patients with advanced liver disease and Hepatocellular Carcinoma (HCC) are often asymptomatic in the early stages; however delays in diagnosis and treatment can lead to increased rates of decompensated liver diseases, late-stage HCC, morbidity and mortality. Ultrasound (US) is commonly used imaging modality for diagnosis of chronic liver diseases that includes fibrosis, cirrhosis and portal hypertension. In this paper, we first provide an overview of various diagnostic methods for stages of liver diseases and discuss the role of Computer-Aided Diagnosis (CAD) systems in diagnosing liver diseases. Second, we review the utility of machine learning and deep learning approaches as diagnostic tools. Finally, we present the limitations of existing studies and outline future directions to further improve diagnostic accuracy, as well as reduce cost and subjectivity, while also improving workflow for the clinicians.
Collapse
Affiliation(s)
- Sonit Singh
- School of CSE, UNSW Sydney, High St, Kensington, 2052, NSW, Australia.
| | - Shakira Hoque
- Gastroenterology and Hepatology Department, St George Hospital, Hogben St, Kogarah, 2217, NSW, Australia
| | - Amany Zekry
- St George and Sutherland Clinical Campus, School of Clinical Medicine, UNSW, High St, Kensington, 2052, NSW, Australia
- Gastroenterology and Hepatology Department, St George Hospital, Hogben St, Kogarah, 2217, NSW, Australia
| | - Arcot Sowmya
- School of CSE, UNSW Sydney, High St, Kensington, 2052, NSW, Australia
| |
Collapse
|
12
|
Tiyarattanachai T, Apiparakoon T, Chaichuen O, Sukcharoen S, Yimsawad S, Jangsirikul S, Chaikajornwat J, Siriwong N, Burana C, Siritaweechai N, Atipas K, Assawamasbunlue N, Tovichayathamrong P, Obcheuythed P, Somvanapanich P, Geratikornsupuk N, Anukulkarnkusol N, Sarakul P, Tanpowpong N, Pinjaroen N, Kerr SJ, Rerknimitr R, Marukatat S, Chaiteerakij R. Artificial intelligence assists operators in real-time detection of focal liver lesions during ultrasound: A randomized controlled study. Eur J Radiol 2023; 165:110932. [PMID: 37390663 DOI: 10.1016/j.ejrad.2023.110932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 05/25/2023] [Accepted: 06/15/2023] [Indexed: 07/02/2023]
Abstract
PURPOSE Detection of hepatocellular carcinoma (HCC) is crucial during surveillance by ultrasound. We previously developed an artificial intelligence (AI) system based on convolutional neural network for detection of focal liver lesions (FLLs) in ultrasound. The primary aim of this study was to evaluate whether the AI system can assist non-expert operators to detect FLLs in real-time, during ultrasound examinations. METHOD This single-center prospective randomized controlled study evaluated the AI system in assisting non-expert and expert operators. Patients with and without FLLs were enrolled and had ultrasound performed twice, with and without AI assistance. McNemar's test was used to compare paired FLL detection rates and false positives between groups with and without AI assistance. RESULTS 260 patients with 271 FLLs and 244 patients with 240 FLLs were enrolled into the groups of non-expert and expert operators, respectively. In non-experts, FLL detection rate in the AI assistance group was significantly higher than the no AI assistance group (36.9 % vs 21.4 %, p < 0.001). In experts, FLL detection rates were not significantly different between the groups with and without AI assistance (66.7 % vs 63.3 %, p = 0.32). False positive detection rates in the groups with and without AI assistance were not significantly different in both non-experts (14.2 % vs 9.2 %, p = 0.08) and experts (8.6 % vs 9.0 %, p = 0.85). CONCLUSIONS The AI system resulted in significant increase in detection of FLLs during ultrasound examinations by non-experts. Our findings may support future use of the AI system in resource-limited settings where ultrasound examinations are performed by non-experts. The study protocol was registered under the Thai Clinical Trial Registry (TCTR20201230003), which is part of the WHO ICTRP Registry Network. The registry can be accessed via the following URL: https://trialsearch.who.int/Trial2.aspx?TrialID=TCTR20201230003.
Collapse
Affiliation(s)
| | - Terapap Apiparakoon
- Center of Excellence for Innovation and Endoscopy in Gastrointestinal Oncology, Division of Gastroenterology, Department of Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Oracha Chaichuen
- Division of Gastroenterology, Department of Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Sasima Sukcharoen
- Division of Gastroenterology, Department of Medicine, King Chulalongkorn Memorial Hospital, The Thai Red Cross Society, Bangkok, Thailand
| | - Sirinda Yimsawad
- Center of Excellence for Innovation and Endoscopy in Gastrointestinal Oncology, Division of Gastroenterology, Department of Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Sureeporn Jangsirikul
- Division of Gastroenterology, Department of Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Jukkaphop Chaikajornwat
- Division of Gastroenterology, Department of Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Nanicha Siriwong
- Division of Gastroenterology, Department of Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Chuti Burana
- Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | | | - Kawin Atipas
- Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | | | | | | | - Pochara Somvanapanich
- Department of Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Nopavut Geratikornsupuk
- Department of Medicine, Queen Savang Vadhana Memorial Hospital, The Thai Red Cross Society, Chonburi, Thailand
| | | | | | - Natthaporn Tanpowpong
- Department of Radiology, Faculty of Medicine, Chulalongkorn University and King Chulalongkorn Memorial Hospital, Bangkok, Thailand
| | - Nutcha Pinjaroen
- Department of Radiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Stephen J Kerr
- Biostatistics Excellence Centre, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Rungsun Rerknimitr
- Center of Excellence for Innovation and Endoscopy in Gastrointestinal Oncology, Division of Gastroenterology, Department of Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Sanparith Marukatat
- Image Processing and Understanding Team, Artificial Intelligence Research Group, National Electronics and Computer Technology Center, Thailand
| | - Roongruedee Chaiteerakij
- Center of Excellence for Innovation and Endoscopy in Gastrointestinal Oncology, Division of Gastroenterology, Department of Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand.
| |
Collapse
|
13
|
Ensemble Learning of Multiple Models Using Deep Learning for Multiclass Classification of Ultrasound Images of Hepatic Masses. BIOENGINEERING (BASEL, SWITZERLAND) 2023; 10:bioengineering10010069. [PMID: 36671641 PMCID: PMC9854883 DOI: 10.3390/bioengineering10010069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 12/29/2022] [Accepted: 01/03/2023] [Indexed: 01/06/2023]
Abstract
Ultrasound (US) is often used to diagnose liver masses. Ensemble learning has recently been commonly used for image classification, but its detailed methods are not fully optimized. The purpose of this study is to investigate the usefulness and comparison of some ensemble learning and ensemble pruning techniques using multiple convolutional neural network (CNN) trained models for image classification of liver masses in US images. Dataset of the US images were classified into four categories: benign liver tumor (BLT) 6320 images, liver cyst (LCY) 2320 images, metastatic liver cancer (MLC) 9720 images, primary liver cancer (PLC) 7840 images. In this study, 250 test images were randomly selected for each class, for a total of 1000 images, and the remaining images were used as the training. 16 different CNNs were used for training and testing ultrasound images. The ensemble learning used soft voting (SV), weighted average voting (WAV), weighted hard voting (WHV) and stacking (ST). All four types of ensemble learning (SV, ST, WAV, and WHV) showed higher values of accuracy than the single CNN. All four types also showed significantly higher deep learning (DL) performance than ResNeXt101 alone. For image classification of liver masses using US images, ensemble learning improved the performance of DL over a single CNN.
Collapse
|
14
|
Ma L, Wang R, He Q, Huang L, Wei X, Lu X, Du Y, Luo J, Liao H. Artificial intelligence-based ultrasound imaging technologies for hepatic diseases. ILIVER 2022; 1:252-264. [DOI: 10.1016/j.iliver.2022.11.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
15
|
Liu JQ, Ren JY, Xu XL, Xiong LY, Peng YX, Pan XF, Dietrich CF, Cui XW. Ultrasound-based artificial intelligence in gastroenterology and hepatology. World J Gastroenterol 2022; 28:5530-5546. [PMID: 36304086 PMCID: PMC9594013 DOI: 10.3748/wjg.v28.i38.5530] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 08/12/2022] [Accepted: 09/22/2022] [Indexed: 02/06/2023] Open
Abstract
Artificial intelligence (AI), especially deep learning, is gaining extensive attention for its excellent performance in medical image analysis. It can automatically make a quantitative assessment of complex medical images and help doctors to make more accurate diagnoses. In recent years, AI based on ultrasound has been shown to be very helpful in diffuse liver diseases and focal liver lesions, such as analyzing the severity of nonalcoholic fatty liver and the stage of liver fibrosis, identifying benign and malignant liver lesions, predicting the microvascular invasion of hepatocellular carcinoma, curative transarterial chemoembolization effect, and prognoses after thermal ablation. Moreover, AI based on endoscopic ultrasonography has been applied in some gastrointestinal diseases, such as distinguishing gastric mesenchymal tumors, detection of pancreatic cancer and intraductal papillary mucinous neoplasms, and predicting the preoperative tumor deposits in rectal cancer. This review focused on the basic technical knowledge about AI and the clinical application of AI in ultrasound of liver and gastroenterology diseases. Lastly, we discuss the challenges and future perspectives of AI.
Collapse
Affiliation(s)
- Ji-Qiao Liu
- Department of Medical Ultrasound, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China
| | - Jia-Yu Ren
- Department of Medical Ultrasound, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China
| | - Xiao-Lan Xu
- Department of Medical Ultrasound, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China
| | - Li-Yan Xiong
- Department of Medical Ultrasound, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China
| | - Yue-Xiang Peng
- Department of Ultrasound, Wuhan Third Hospital, Tongren Hospital of Wuhan University, Wuhan 430030, Hubei Province, China
| | - Xiao-Fang Pan
- Health Medical Department, Dalian Municipal Central Hospital, Dalian 116000, Liaoning Province, China
| | - Christoph F Dietrich
- Department Allgemeine Innere Medizin, Kliniken Hirslanden Beau Site, Salem und Permanence, Bern 3003, Switzerland
| | - Xin-Wu Cui
- Department of Medical Ultrasound, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China
| |
Collapse
|
16
|
Barash Y, Klang E, Lux A, Konen E, Horesh N, Pery R, Zilka N, Eshkenazy R, Nachmany I, Pencovich N. Artificial intelligence for identification of focal lesions in intraoperative liver ultrasonography. Langenbecks Arch Surg 2022; 407:3553-3560. [PMID: 36068378 DOI: 10.1007/s00423-022-02674-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Accepted: 09/02/2022] [Indexed: 11/28/2022]
Abstract
PURPOSE Intraoperative ultrasonography (IOUS) of the liver is a crucial adjunct in every liver resection and may significantly impact intraoperative surgical decisions. However, IOUS is highly operator dependent and has a steep learning curve. We describe the design and assessment of an artificial intelligence (AI) system to identify focal liver lesions in IOUS. METHODS IOUS images were collected during liver resections performed between November 2020 and November 2021. The images were labeled by radiologists and surgeons as normal liver tissue versus images that contain liver lesions. A convolutional neural network (CNN) was trained and tested to classify images based on the labeling. Algorithm performance was tested in terms of area under the curves (AUCs), accuracy, sensitivity, specificity, F1 score, positive predictive value, and negative predictive value. RESULTS Overall, the dataset included 5043 IOUS images from 16 patients. Of these, 2576 were labeled as normal liver tissue and 2467 as containing focal liver lesions. Training and testing image sets were taken from different patients. Network performance area under the curve (AUC) was 80.2 ± 2.9%, and the overall classification accuracy was 74.6% ± 3.1%. For maximal sensitivity of 99%, the classification specificity is 36.4 ± 9.4%. CONCLUSIONS This study provides for the first time a proof of concept for the use of AI in IOUS and show that high accuracy can be achieved. Further studies using high volume data are warranted to increase accuracy and differentiate between lesion types.
Collapse
Affiliation(s)
- Yiftach Barash
- Department of Radiology, Sheba Medical Center, Tel-Hashomer, Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Eyal Klang
- Department of Radiology, Sheba Medical Center, Tel-Hashomer, Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Adar Lux
- Department of Radiology, Sheba Medical Center, Tel-Hashomer, Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Eli Konen
- Department of Radiology, Sheba Medical Center, Tel-Hashomer, Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Nir Horesh
- Department of General Surgery and Transplantation, Sheba Medical Center, Tel-Hashomer, Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Ron Pery
- Department of General Surgery and Transplantation, Sheba Medical Center, Tel-Hashomer, Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Nadav Zilka
- Department of General Surgery and Transplantation, Sheba Medical Center, Tel-Hashomer, Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Rony Eshkenazy
- Department of General Surgery and Transplantation, Sheba Medical Center, Tel-Hashomer, Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Ido Nachmany
- Department of General Surgery and Transplantation, Sheba Medical Center, Tel-Hashomer, Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Niv Pencovich
- Department of General Surgery and Transplantation, Sheba Medical Center, Tel-Hashomer, Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel.
| |
Collapse
|
17
|
Performance of Deep Learning-Based Algorithm for Detection of Pediatric Intussusception on Abdominal Ultrasound Images. Gastroenterol Res Pract 2022; 2022:9285238. [PMID: 35991581 PMCID: PMC9391185 DOI: 10.1155/2022/9285238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/21/2022] [Accepted: 07/25/2022] [Indexed: 11/17/2022] Open
Abstract
Background and Aims Diagnosing pediatric intussusception from ultrasound images can be a difficult task in many primary care hospitals that lack experienced radiologists. To address this challenge, this study developed an artificial intelligence- (AI-) based system for automatic detection of “concentric circles” signs on ultrasound images, thereby improving the efficiency and accuracy of pediatric intussusception diagnosis. Methods A total of 440 cases (373 pediatric intussusception and 67 normal cases) were retrospectively collected from Children's Hospital affiliated to Zhejiang University School of Medicine from January 2020 to December 2020. An improved Faster RCNN deep learning framework was used to detect “concentric circle” signs. Finally, independent validation set was used to evaluate the performance of the developed AI tool. Results The data of pediatric intussusception were divided into a training set and validation set according to the ratio of 8 : 2, with training set (298 pediatric intussusception) and validation set (75 pediatric intussusception and 67 normal cases). In the “concentric circle” detection model, the detection rate, recall, specificity, and F1 score assessed by the validation set were 92.8%, 95.0%, 92.2%, and 86.4%, respectively. Pediatric intussusception was classified by “concentric circle” signs, and the accuracy, recall, specificity, and F1 score were 93.0%, 92.0%, 94.1%, and 93.2% on the validation set, respectively. Conclusion The model established in this paper can realize the automatic detection of “concentric circle” signs in the ultrasound images of abdominal intussusception in children; the AI tool can improve the diagnosis speed of pediatric intussusception. It is necessary to further develop an artificial intelligence system for real-time detection of “concentric circles” in ultrasound images for the judgment of children with intussusception.
Collapse
|
18
|
Cao LL, Peng M, Xie X, Chen GQ, Huang SY, Wang JY, Jiang F, Cui XW, Dietrich CF. Artificial intelligence in liver ultrasound. World J Gastroenterol 2022; 28:3398-3409. [PMID: 36158262 PMCID: PMC9346461 DOI: 10.3748/wjg.v28.i27.3398] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 04/18/2022] [Accepted: 06/19/2022] [Indexed: 02/06/2023] Open
Abstract
Artificial intelligence (AI) is playing an increasingly important role in medicine, especially in the field of medical imaging. It can be used to diagnose diseases and predict certain statuses and possible events that may happen. Recently, more and more studies have confirmed the value of AI based on ultrasound in the evaluation of diffuse liver diseases and focal liver lesions. It can assess the severity of liver fibrosis and nonalcoholic fatty liver, differentially diagnose benign and malignant liver lesions, distinguish primary from secondary liver cancers, predict the curative effect of liver cancer treatment and recurrence after treatment, and predict microvascular invasion in hepatocellular carcinoma. The findings from these studies have great clinical application potential in the near future. The purpose of this review is to comprehensively introduce the current status and future perspectives of AI in liver ultrasound.
Collapse
Affiliation(s)
- Liu-Liu Cao
- Department of Medical Ultrasound, The Second Hospital of Anhui Medical University, Hefei 230601, Anhui Province, China
| | - Mei Peng
- Department of Medical Ultrasound, The Second Hospital of Anhui Medical University, Hefei 230601, Anhui Province, China
| | - Xiang Xie
- Department of Medical Ultrasound, The Second Hospital of Anhui Medical University, Hefei 230601, Anhui Province, China
| | - Gong-Quan Chen
- Department of Medical Ultrasound, Minda Hospital of Hubei Minzu University, Enshi 445000, Hubei Province, China
| | - Shu-Yan Huang
- Department of Medical Ultrasound, The First People's Hospital of Huaihua, Huaihua 418000, Hunan Province, China
| | - Jia-Yu Wang
- Department of Medical Ultrasound, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China
| | - Fan Jiang
- Department of Medical Ultrasound, The Second Hospital of Anhui Medical University, Hefei 230601, Anhui Province, China
| | - Xin-Wu Cui
- Department of Medical Ultrasound, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China
| | - Christoph F Dietrich
- Department Allgemeine Innere Medizin, Kliniken Hirslanden Beau Site, Salem und Permanence, Bern 3626, Switzerland
| |
Collapse
|
19
|
Tiyarattanachai T, Apiparakoon T, Marukatat S, Sukcharoen S, Yimsawad S, Chaichuen O, Bhumiwat S, Tanpowpong N, Pinjaroen N, Rerknimitr R, Chaiteerakij R. The feasibility to use artificial intelligence to aid detecting focal liver lesions in real-time ultrasound: a preliminary study based on videos. Sci Rep 2022; 12:7749. [PMID: 35545628 PMCID: PMC9095624 DOI: 10.1038/s41598-022-11506-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 04/11/2022] [Indexed: 11/09/2022] Open
Abstract
Despite the wide availability of ultrasound machines for hepatocellular carcinoma surveillance, an inadequate number of expert radiologists performing ultrasounds in remote areas remains a primary barrier for surveillance. We demonstrated feasibility of artificial intelligence (AI) to aid in the detection of focal liver lesions (FLLs) during ultrasound. An AI system for FLL detection in ultrasound videos was developed. Data in this study were prospectively collected at a university hospital. We applied a two-step training strategy for developing the AI system by using a large collection of ultrasound snapshot images and frames from full-length ultrasound videos. Detection performance of the AI system was evaluated and then compared to detection performance by 25 physicians including 16 non-radiologist physicians and 9 radiologists. Our dataset contained 446 videos (273 videos with 387 FLLs and 173 videos without FLLs) from 334 patients. The videos yielded 172,035 frames with FLLs and 1,427,595 frames without FLLs for training on the AI system. The AI system achieved an overall detection rate of 89.8% (95%CI: 84.5-95.0) which was significantly higher than that achieved by non-radiologist physicians (29.1%, 95%CI: 21.2-37.0, p < 0.001) and radiologists (70.9%, 95%CI: 63.0-78.8, p < 0.001). Median false positive detection rate by the AI system was 0.7% (IQR: 1.3%). AI system operation speed reached 30-34 frames per second, showing real-time feasibility. A further study to demonstrate whether the AI system can assist operators during ultrasound examinations is warranted.
Collapse
Affiliation(s)
| | - Terapap Apiparakoon
- Center of Excellence for Innovation and Endoscopy in Gastrointestinal Oncology, Division of Gastroenterology, Department of Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Sanparith Marukatat
- Image Processing and Understanding Team, Artificial Intelligence Research Group, National Electronics and Computer Technology Center, Pathum Thani, Thailand
| | - Sasima Sukcharoen
- Division of Gastroenterology, Department of Medicine, King Chulalongkorn Memorial Hospital, The Thai Red Cross Society, Bangkok, Thailand
| | - Sirinda Yimsawad
- Center of Excellence for Innovation and Endoscopy in Gastrointestinal Oncology, Division of Gastroenterology, Department of Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Oracha Chaichuen
- Division of Gastroenterology, Department of Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Siwat Bhumiwat
- Department of Radiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Natthaporn Tanpowpong
- Department of Radiology, Faculty of Medicine, Chulalongkorn University and King Chulalongkorn Memorial Hospital, Bangkok, Thailand
| | - Nutcha Pinjaroen
- Department of Radiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Rungsun Rerknimitr
- Center of Excellence for Innovation and Endoscopy in Gastrointestinal Oncology, Division of Gastroenterology, Department of Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Roongruedee Chaiteerakij
- Center of Excellence for Innovation and Endoscopy in Gastrointestinal Oncology, Division of Gastroenterology, Department of Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand.
| |
Collapse
|
20
|
Tonini V, Vigutto G, Donati R. Liver surgery for colorectal metastasis: New paths and new goals with the help of artificial intelligence. Artif Intell Gastroenterol 2022; 3:28-35. [DOI: 10.35712/aig.v3.i2.28] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 03/28/2022] [Accepted: 04/19/2022] [Indexed: 02/06/2023] Open
Abstract
Colorectal cancer is one of the most common neoplasia with an high risk to metastatic spread. Improving medical and surgical treatment is moving along with improving the precision of diagnosis and patient's assessment, the latter two aided more and more with the use of artificial intelligence (AI). The management of colorectal liver metastasis is multidisciplinary, and surgery is the main option. After the diagnosis, a surgical assessment of the patient is fundamental. Reaching a R0 resection with a proper remnant liver volume can be done using new techniques involving also artificial intelligence. Considering the recent application of artificial intelligence as a valid substitute for liver biopsy in chronic liver diseases, several authors tried to apply similar techniques to pre-operative imaging of liver metastasis. Radiomics showed good results in identifying structural changes in a unhealthy liver and in evaluating the prognosis after a liver resection. Recently deep learning has been successfully applied in estimating the remnant liver volume before surgery. Moreover AI techniques can help surgeons to perform an early diagnosis of neoplastic relapse or a better differentiation between a colorectal metastasis and a benign lesion. AI could be applied also in the histopathological diagnostic tool. Although AI implementation is still partially automatized, it appears faster and more precise than the usual diagnostic tools and, in the short future, could become the new gold standard in liver surgery.
Collapse
Affiliation(s)
- Valeria Tonini
- Department of Medical and Surgical Sciences, Sant' Orsola Hospital University of Bologna, Bologna 40138, Italy
| | - Gabriele Vigutto
- Department of Medical and Surgical Sciences, St Orsola Hospital, University of Bologna, Bologna 40138, Italy
| | - Riccardo Donati
- Department of Electrical, Electronic and Information Engineering ”Guglielmo Marconi” (DEI), University of Bologna, Bologna 40138, Italy
| |
Collapse
|