1
|
Bertolazi AA, Passamani LZ, de Souza SB, Rodrigues WP, Campostrini E, Pinto VB, Silveira V, de Rezende CE, Cruz C, Cardoso EJBN, Ramos AC. Comparative effects of Serendipita indica and a mix of arbuscular mycorrhizal fungi on the growth, photosynthetic capacity, and proteomics of Schinus terebinthifolius Raddi. PLANTA 2025; 261:34. [PMID: 39808192 DOI: 10.1007/s00425-025-04608-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Accepted: 01/06/2025] [Indexed: 01/16/2025]
Abstract
MAIN CONCLUSION Both, Serendipita indica and AMF, show promise as sustainable biofertilizers for reforestation, improving nutrient uptake and stress tolerance, despite contrasting effects on photosynthetic capacity and biomass allocation. Reclaiming degraded areas is essential for biodiversity conservation and enhancing ecosystem services enhancement, especially when using native species. This study investigated Schinus terebinthifolius Raddi, a native Brazilian species, and its compatibility with plant growth-promoting microorganisms (PGPM), including an endophytic fungus (Serendipita indica) and a consortium of arbuscular mycorrhizal fungi (AMF), to identify effective strategies for reforestation in nutrient-poor environments. We observed growth stimulation by both PGPMs; however, S. indica primarily enhanced root weight, whereas AMF improved shoot weight. S. indica's positive effects on root systems could be attributed to increased auxin levels and altered root architecture, which are critical for seedling establishment in reforestation programs. In terms of nutritional status, both treatments increased the content of most nutrients, with higher micronutrient contents in the shoots and higher macronutrient content in roots of inoculated plants. Despite AMF's role in enhancing photosynthesis, plants inoculated with these fungi showed reduced photosynthetic capacity traits, possibly due to lower leaf nitrogen content. The proteomic analysis of Schinus terebinthifolius leaf extracts revealed that, despite the upregulation of several proteins associated with the photosynthetic apparatus in response to S. indica treatment, no enhancement in photosynthetic capacity was observed. We also found several proteins related to oxidative stress in plants inoculated with both fungi, indicating a greater tolerance to adverse environmental conditions. These findings underscore the potential of both, S. indica and AMF, as sustainable alternatives to chemical fertilizers in reforestation efforts, enhancing seedling quality and survival in nutrient-poor soils.
Collapse
Affiliation(s)
- Amanda A Bertolazi
- Laboratory of Environmental Microbiology and Biotechnology, Universidade Vila Velha (UVV), Vila Velha, ES, Brazil
| | - Lucas Z Passamani
- FAESA University Center, Av. Vitória, 2220, Vitória, ES, 29053-360, Brazil
| | - Sávio B de Souza
- Laboratory of Environmental Microbiology and Biotechnology, Universidade Vila Velha (UVV), Vila Velha, ES, Brazil
| | - Weverton P Rodrigues
- Center of Agrarian Sciences, CCA, Universidade Estadual da Região Tocantina do Maranhão (UEMASUL), Avenida Agrária, 100, Imperatriz, Estreito, Maranhão, 65900-001, Brazil
| | - Eliemar Campostrini
- Laboratory of Plant Physiology, CCTA, Universidade Estadual do Norte Fluminense Darcy Ribeiro (UENF), Campos dos Goytacazes, RJ, Brazil
| | - Vitor B Pinto
- Laboratory of Biotechnology, Integrative Biology Unit, CBB, Universidade Estadual do Norte Fluminense Darcy Ribeiro (UENF), Campos dos Goytacazes, RJ, 28013-602, Brazil
| | - Vanildo Silveira
- Laboratory of Biotechnology, Integrative Biology Unit, CBB, Universidade Estadual do Norte Fluminense Darcy Ribeiro (UENF), Campos dos Goytacazes, RJ, 28013-602, Brazil
| | - Carlos E de Rezende
- Laboratory of Environmental Sciences, CBB, Universidade Estadual do Norte Fluminense Darcy Ribeiro (UENF), Campos dos Goytacazes, RJ, 28013-602, Brazil
| | - Cristina Cruz
- Faculty of Sciences, Center for Ecology, Evolution and Environmental Changes (Ce3C), Universidade de Lisboa, Campo Grande, Portugal
| | - Elke J B N Cardoso
- Laboratory of Soil Microbiology, Soil Science Department, 'Luiz de Queiroz' College of Agriculture, University of São Paulo, Piracicaba, SP, 13418-900, Brazil
| | - Alessandro Coutinho Ramos
- Laboratory of Environmental Microbiology and Biotechnology, Universidade Vila Velha (UVV), Vila Velha, ES, Brazil.
| |
Collapse
|
2
|
Wen Y, Shi F, Zhang B, Li K, Chang W, Fan X, Dai CL, Song F. Rhizophagus irregularis and biochar can synergistically improve the physiological characteristics of saline-alkali resistance of switchgrass. PHYSIOLOGIA PLANTARUM 2024; 176:e14367. [PMID: 38837234 DOI: 10.1111/ppl.14367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 05/03/2024] [Accepted: 05/08/2024] [Indexed: 06/07/2024]
Abstract
Inoculation of arbuscular mycorrhizal fungi (AMF) or biochar (BC) application can improve photosynthesis and promote plant growth under saline-alkali stress. However, little is known about the effects of the two combined on growth and physiological characteristics of switchgrass under saline-alkali stress. This study examined the effects of four treatments: (1) no AMF inoculation and no biochar addition (control), (2) biochar (BC) alone, (3) AMF (Rhizophagus irregularis, Ri) alone, and (4) the combination of both (BC+Ri) on the plant biomass, antioxidant enzymes, chlorophyll, and photosynthetic parameters of switchgrass under saline-alkali stress. The results showed that the above-ground, belowground and total biomass of switchgrass in the BC+Ri treatment group was significantly higher (+136.7%, 120.2% and 132.4%, respectively) than in other treatments compared with Control. BC+Ri treatment significantly increased plant leaves' relative chlorophyll content, antioxidant enzyme activity, and photosynthesis parameters. It is worth noting that the transpiration rate, stomatal conductance, net photosynthetic rate, PSII efficiency and other photosynthetic-related indexes of the BC+Ri treatment group were the highest (38% to 54% higher than other treatments). The fitting results of light response and CO2 response curves showed that the light saturation point, light compensation point, maximum carboxylation rate and maximum electron transfer rate of switchgrass in the Ri+BC treatment group were the highest. In conclusion, biochar combined with Ri has potential beneficial effects on promoting switchgrass growth under saline-alkali stress and improving the activity of antioxidant enzymes and photosynthetic characteristics of plants.
Collapse
Affiliation(s)
- Yuqiang Wen
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region & Key Laboratory of Microbiology, College of Heilongjiang Province & School of Life Sciences, Heilongjiang University, Harbin, China
- Jiaxiang Industrial Technology Research Institute of Heilongjiang University, Jining, China
| | - Feng Shi
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region & Key Laboratory of Microbiology, College of Heilongjiang Province & School of Life Sciences, Heilongjiang University, Harbin, China
| | - Bo Zhang
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region & Key Laboratory of Microbiology, College of Heilongjiang Province & School of Life Sciences, Heilongjiang University, Harbin, China
| | - Kun Li
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region & Key Laboratory of Microbiology, College of Heilongjiang Province & School of Life Sciences, Heilongjiang University, Harbin, China
| | - Wei Chang
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region & Key Laboratory of Microbiology, College of Heilongjiang Province & School of Life Sciences, Heilongjiang University, Harbin, China
- Jiaxiang Industrial Technology Research Institute of Heilongjiang University, Jining, China
| | - Xiaoxu Fan
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region & Key Laboratory of Microbiology, College of Heilongjiang Province & School of Life Sciences, Heilongjiang University, Harbin, China
| | - Chang Lei Dai
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region & Key Laboratory of Microbiology, College of Heilongjiang Province & School of Life Sciences, Heilongjiang University, Harbin, China
- School of Hydraulic and Electric-Power of Heilongjiang University, Harbin, China
| | - Fuqiang Song
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region & Key Laboratory of Microbiology, College of Heilongjiang Province & School of Life Sciences, Heilongjiang University, Harbin, China
- Jiaxiang Industrial Technology Research Institute of Heilongjiang University, Jining, China
| |
Collapse
|
3
|
Zhang J, Lu J, Zhu Y, Shen X, Zhu B, Qin L. Roles of endophytic fungi in medicinal plant abiotic stress response and TCM quality development. CHINESE HERBAL MEDICINES 2024; 16:204-213. [PMID: 38706819 PMCID: PMC11064630 DOI: 10.1016/j.chmed.2023.02.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 12/27/2022] [Accepted: 02/22/2023] [Indexed: 05/07/2024] Open
Abstract
Medicinal plants, as medicinal materials and important drug components, have been used in traditional and folk medicine for ages. However, being sessile organisms, they are seriously affected by extreme environmental conditions and abiotic stresses such as salt, heavy metal, temperature, and water stresses. Medicinal plants usually produce specific secondary metabolites to survive such stresses, and these metabolites can often be used for treating human diseases. Recently, medicinal plants have been found to partner with endophytic fungi to form a long-term, stable, and win-win symbiotic relationship. Endophytic fungi can promote secondary metabolite accumulation in medicinal plants. The close relationship can improve host plant resistance to the abiotic stresses of soil salinity, drought, and extreme temperatures. Their symbiosis also sheds light on plant growth and active compound production. Here, we show that endophytic fungi can improve the host medicinal plant resistance to abiotic stress by regulating active compounds, reducing oxidative stress, and regulating the cell ion balance. We also identify the deficiencies and burning issues of available studies and present promising research topics for the future. This review provides guidance for endophytic fungi research to improve the ability of medicinal plants to resist abiotic stress. It also suggests ideas and methods for active compound accumulation in medicinal plants and medicinal material development during the response to abiotic stress.
Collapse
Affiliation(s)
- Jiahao Zhang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Jiemiao Lu
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Yichun Zhu
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Xiaoxia Shen
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
- Songyang Institute of Zhejiang Chinese Medical University, Songyang 323400, China
| | - Bo Zhu
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
- Songyang Institute of Zhejiang Chinese Medical University, Songyang 323400, China
| | - Luping Qin
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
- Songyang Institute of Zhejiang Chinese Medical University, Songyang 323400, China
| |
Collapse
|
4
|
Kaya C, Uğurlar F, Ashraf M, Alyemeni MN, Dewil R, Ahmad P. Mitigating salt toxicity and overcoming phosphate deficiency alone and in combination in pepper (Capsicum annuum L.) plants through supplementation of hydrogen sulfide. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 351:119759. [PMID: 38091729 DOI: 10.1016/j.jenvman.2023.119759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 11/22/2023] [Accepted: 12/01/2023] [Indexed: 01/14/2024]
Abstract
While it is widely recognized that hydrogen sulfide (H2S) promotes plant stress tolerance, the precise processes through which H2S modulates this process remains unclear. The processes by which H2S promotes phosphorus deficiency (PD) and salinity stress (SS) tolerance, simulated individually or together, were examined in this study. The adverse impacts on plant biomass, total chlorophyll and chlorophyll fluorescence were more pronounced with joint occurrence of PD and SS than with individual application. Malondialdehyde (MDA), hydrogen peroxide (H2O2), and electrolyte leakage (EL) levels in plant leaves were higher in plants exposed to joint stresses than in plants grown under an individual stress. When plants were exposed to a single stress as opposed to both stressors, sodium hydrosulfide (NaHS) treatment more efficiently decreased EL, MDA, and H2O2 concentrations. Superoxide dismutase, peroxidase, glutathione reductase and ascorbate peroxidase activities were increased by SS alone or in conjunction with PD, whereas catalase activity decreased significantly. The favorable impact of NaHS on all the evaluated attributes was reversed by supplementation with 0.2 mM hypotaurine (HT), a H2S scavenger. Overall, the unfavorable effects caused to NaHS-supplied plants by a single stress were less severe compared with those caused by the combined administration of both stressors.
Collapse
Affiliation(s)
- Cengiz Kaya
- Soil Science and Plant Nutrition Department, Harran University, Sanliurfa, Turkey.
| | - Ferhat Uğurlar
- Soil Science and Plant Nutrition Department, Harran University, Sanliurfa, Turkey
| | - Muhammad Ashraf
- Institute of Molecular Biology and Biotechnology, The University of Lahore, Pakistan
| | - Mohammed Nasser Alyemeni
- Botany and Microbiology Department, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Raf Dewil
- Department of Chemical Engineering, KU Leuven, Belgium; Department of Engineering Science, University of Oxford, United Kingdom
| | - Parvaiz Ahmad
- Department of Botany, GDC, Pulwama, 192301, Jammu and Kashmir, India.
| |
Collapse
|
5
|
Zheng M, Zhong S, Wang W, Tang Z, Bu T, Li Q. Serendipita indica Promotes the Growth of Tartary Buckwheat by Stimulating Hormone Synthesis, Metabolite Production, and Increasing Systemic Resistance. J Fungi (Basel) 2023; 9:1114. [PMID: 37998919 PMCID: PMC10671858 DOI: 10.3390/jof9111114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 11/14/2023] [Accepted: 11/15/2023] [Indexed: 11/25/2023] Open
Abstract
The main objective of this study was to investigate the influence of Serendipita indica on the growth of Tartary buckwheat plants. This study highlighted that the roots of Tartary buckwheat can be colonized by S. indica and that this fungal endophyte improved plants height, fresh weight, dry weight, and grain yield. In the meantime, the colonization of S. indica in Tartary buckwheat leaves resulted in elevated levels of photosynthesis, plant hormone content, antioxidant enzyme activity, proline content, chlorophyll content, soluble sugars, and protein content. Additionally, the introduction of S. indica to Tartary buckwheat roots led to a substantial rise in the levels of flavonoids and phenols found in the leaves and seeds of Tartary buckwheat. In addition, S. indica colonization reduced the content of malondialdehyde and hydrogen peroxide when compared to non-colonized plants. Importantly, the drought tolerance of Tartary buckwheat plants is increased, which benefits from physiology and bio-chemical changes in plants after S. indica colonized. In conclusion, we have shown that S. indica can improve systematic resistance and promote the growth of Tartary buckwheat by enhancing the photosynthetic capacity of Tartary buckwheat, inducing the production of IAA, increasing the content of secondary metabolites such as total phenols and total flavonoids, and improving the antioxidant enzyme activity of the plant.
Collapse
Affiliation(s)
| | | | | | | | | | - Qingfeng Li
- College of Life Sciences, Sichuan Agricultural University, Ya’an 625014, China; (M.Z.); (S.Z.); (W.W.); (Z.T.); (T.B.)
| |
Collapse
|
6
|
Sodhi GK, Saxena S. Plant growth-promoting endophyte Nigrospora oryzae mitigates abiotic stress in rice (Oryza sativa L.). FEMS Microbiol Ecol 2023; 99:fiad094. [PMID: 37567759 DOI: 10.1093/femsec/fiad094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 07/18/2023] [Accepted: 08/10/2023] [Indexed: 08/13/2023] Open
Abstract
Climate change has severely impacted crop productivity. Nascent technologies, such as employing endophytic fungi to induce crop adaptogenic changes, are being explored. In this study, 62 isolates of fungi existing as endophytes were recovered from different parts of a drought-resistant rice variety and screened for salinity and drought tolerance. Nigrospora oryzae #2OSTUR9a exhibited in vitro antioxidant potential, indole acetic acid (351.01 ± 7.11 µg/mL), phosphate solubilisation (PI 1.115 ± 0.02), siderophore (72.57% ± 0.19%) and 1-aminocyclopropane-1-carboxylate deaminase production (305.36 ± 0.80 nmol α-ketobutyrate/mg/h). To the best of our knowledge, this is the first report on salinity and drought stress mitigation in rice plants by endophytic N. oryzae. In treated plants under salinity stress, the relative water, chlorophyll, phenolic and osmolyte content increased by 48.39%, 30.94%, 25.32% and 43.67%, respectively, compared with their respective controls. A similar trend was observed under drought stress, where the above parameters increased by 50.31%, 39.47%, 32.95% and 50.42%, respectively. Additionally, the antioxidant status of the treated plants was much higher because of the enhanced antioxidant enzymes and reduced lipid peroxidation. Our findings indicate the ability of N. oryzae to effectively mitigate the impact of stress, thereby enabling the rice plant to sustain stress conditions.
Collapse
Affiliation(s)
- Gurleen Kaur Sodhi
- Department of Biotechnology, Thapar Institute of Engineering and Technology, Patiala-147004, Punjab, India
| | - Sanjai Saxena
- Department of Biotechnology, Thapar Institute of Engineering and Technology, Patiala-147004, Punjab, India
| |
Collapse
|
7
|
Lange BM, Srividya N, Lange I, Parrish AN, Benzenberg LR, Pandelova I, Vining KJ, Wüst M. Biochemical basis for the formation of organ-specific volatile blends in mint. FRONTIERS IN PLANT SCIENCE 2023; 14:1125065. [PMID: 37123862 PMCID: PMC10140540 DOI: 10.3389/fpls.2023.1125065] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 03/20/2023] [Indexed: 05/03/2023]
Abstract
Above-ground material of members of the mint family is commercially distilled to extract essential oils, which are then formulated into a myriad of consumer products. Most of the research aimed at characterizing the processes involved in the formation of terpenoid oil constituents has focused on leaves. We now demonstrate, by investigating three mint species, peppermint (Mentha ˣ piperita L.), spearmint (Mentha spicata L.) and horsemint (Mentha longifolia (L.) Huds.; accessions CMEN 585 and CMEN 584), that other organs - namely stems, rhizomes and roots - also emit volatiles and that the terpenoid volatile composition of these organs can vary substantially from that of leaves, supporting the notion that substantial, currently underappreciated, chemical diversity exists. Differences in volatile quantities released by plants whose roots had been dipped in a Verticillium dahliae-spore suspension (experimental) or dipped in water (controls) were evident: increases of some volatiles in the root headspace of mint species that are susceptible to Verticillium wilt disease (peppermint and M. longifolia CMEN 584) were detected, while the quantities of certain volatiles decreased in rhizomes of species that show resistance to the disease (spearmint and M. longifolia CMEN 585). To address the genetic and biochemical basis underlying chemical diversity, we took advantage of the newly sequenced M. longifolia CMEN 585 genome to identify candidate genes putatively coding for monoterpene synthases (MTSs), the enzymes that catalyze the first committed step in the biosynthesis of monoterpenoid volatiles. The functions of these genes were established by heterologous expression in Escherichia coli, purification of the corresponding recombinant proteins, and enzyme assays, thereby establishing the existence of MTSs with activities to convert a common substrate, geranyl diphosphate, to (+)-α-terpineol, 1,8-cineole, γ-terpinene, and (-)-bornyl diphosphate, but were not active with other potential substrates. In conjunction with previously described MTSs that catalyze the formation of (-)-β-pinene and (-)-limonene, the product profiles of the MTSs identified here can explain the generation of all major monoterpene skeletons represented in the volatiles released by different mint organs.
Collapse
Affiliation(s)
- B. Markus Lange
- Institute of Biological Chemistry and M.J. Murdock Metabolomics Laboratory, WashingtonState University, Pullman, WA, United States
- *Correspondence: B. Markus Lange,
| | - Narayanan Srividya
- Institute of Biological Chemistry and M.J. Murdock Metabolomics Laboratory, WashingtonState University, Pullman, WA, United States
| | - Iris Lange
- Institute of Biological Chemistry and M.J. Murdock Metabolomics Laboratory, WashingtonState University, Pullman, WA, United States
| | - Amber N. Parrish
- Institute of Biological Chemistry and M.J. Murdock Metabolomics Laboratory, WashingtonState University, Pullman, WA, United States
| | - Lukas R. Benzenberg
- Institute of Biological Chemistry and M.J. Murdock Metabolomics Laboratory, WashingtonState University, Pullman, WA, United States
- Institut für Ernährungs- und Lebensmittelwissenschaften, Rheinische Friedrich Wilhelms-UniversitätBonn, Bonn, Germany
| | - Iovanna Pandelova
- Department of Horticulture, Oregon State University, Corvallis, OR, United States
| | - Kelly J. Vining
- Department of Horticulture, Oregon State University, Corvallis, OR, United States
| | - Matthias Wüst
- Institut für Ernährungs- und Lebensmittelwissenschaften, Rheinische Friedrich Wilhelms-UniversitätBonn, Bonn, Germany
| |
Collapse
|
8
|
Wang Q, Hu J, Hu H, Li Y, Xiang M, Wang D. Integrated eco-physiological, biochemical, and molecular biological analyses of selenium fortification mechanism in alfalfa. PLANTA 2022; 256:114. [PMID: 36370252 DOI: 10.1007/s00425-022-04027-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 11/03/2022] [Indexed: 06/16/2023]
Abstract
Foliar Se (IV) application at 100 mg/kg can act as a positive bio-stimulator of redox, photosynthesis, and nutrient metabolism in alfalfa via phenotypes, nutritional compositions, biochemistry, combined with transcriptome analysis. Selenium (Se) is an essential element for mammals, and plants are the primary source of dietary Se. However, Se usually has dual (beneficial/toxic) effects on the plant itself. Alfalfa (Medicago sativa L.) is one of the most important forage resources in the world due to its high nutritive value. In this study, we have investigated the effects of sodium selenite (Se (IV)) (0, 100, 200, 300, and 500 mg/kg) on eco-physiological, biochemical, and transcriptional mechanisms in alfalfa. The phenotypic and nutritional composition alterations revealed that lower Se (IV) (100 mg/kg) levels positively affected alfalfa; it enhanced the antioxidant activity, which may contribute to redox homeostasis and chloroplast function. At 100 mg/kg Se (IV) concentration, the H2O2, and malondialdehyde (MDA) contents decreased by 36.72% and 22.62%, respectively, whereas the activity of glutathione peroxidase (GPX) increased by 31.10%. Se supplementation at 100 mg/kg increased the plant pigments contents, the light-harvesting capacity of PSII (Fv/Fm) and PSI (ΔP700max), and the carbon fixation efficiency, which was demonstrated by enhanced photosynthesis (37.6%). Furthermore, alfalfa shifted carbon flux to protein synthesis to improve quality at 100 mg/kg of Se (IV) by upregulating carbohydrate and amino acid metabolic genes. On the contrary, at 500 mg/kg, Se (IV) became toxic. Higher Se (IV) disordered the plant antioxidant system, increasing H2O2 and MDA by 14.2 and 4.3%, respectively. Moreover, photosynthesis was inhibited by 20.2%, and more structural substances, such as lignin, were synthesized. These results strongly suggest that Se (IV) at a concentration of 100 mg/kg act as the positive bio-stimulator of redox metabolism, photosynthesis, and nutrient in alfalfa.
Collapse
Affiliation(s)
- Qingdong Wang
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China
- Henan Key Laboratory of Bioactive Macromolecules, Zhengzhou, 450001, Henan, China
- Henan Grass and Animal Engineering Technology Research Center, Zhengzhou, 450046, Henan, China
| | - Jinke Hu
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China
- Henan Key Laboratory of Bioactive Macromolecules, Zhengzhou, 450001, Henan, China
- Henan Grass and Animal Engineering Technology Research Center, Zhengzhou, 450046, Henan, China
| | - Huafeng Hu
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China.
- Henan University of Animal Husbandry and Economy, Zhengzhou, 450046, Hennan, China.
- Henan Key Laboratory of Bioactive Macromolecules, Zhengzhou, 450001, Henan, China.
- Henan Grass and Animal Engineering Technology Research Center, Zhengzhou, 450046, Henan, China.
| | - Yan Li
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China
- Henan Key Laboratory of Bioactive Macromolecules, Zhengzhou, 450001, Henan, China
- Henan Grass and Animal Engineering Technology Research Center, Zhengzhou, 450046, Henan, China
| | - Meiling Xiang
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China
- Henan Key Laboratory of Bioactive Macromolecules, Zhengzhou, 450001, Henan, China
- Henan Grass and Animal Engineering Technology Research Center, Zhengzhou, 450046, Henan, China
| | - Dezhen Wang
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China
- Henan Key Laboratory of Bioactive Macromolecules, Zhengzhou, 450001, Henan, China
- Henan Grass and Animal Engineering Technology Research Center, Zhengzhou, 450046, Henan, China
| |
Collapse
|
9
|
Rhizosphere microbes enhance plant salt tolerance: toward crop production in saline soil. Comput Struct Biotechnol J 2022; 20:6543-6551. [DOI: 10.1016/j.csbj.2022.11.046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 11/22/2022] [Accepted: 11/22/2022] [Indexed: 11/27/2022] Open
|
10
|
El-Shafey NM, Marzouk MA, Yasser MM, Shaban SA, Beemster GT, AbdElgawad H. Harnessing Endophytic Fungi for Enhancing Growth, Tolerance and Quality of Rose-Scented Geranium ( Pelargonium graveolens (L'Hér) Thunb.) Plants under Cadmium Stress: A Biochemical Study. J Fungi (Basel) 2021; 7:1039. [PMID: 34947021 PMCID: PMC8705862 DOI: 10.3390/jof7121039] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 11/26/2021] [Accepted: 11/28/2021] [Indexed: 01/24/2023] Open
Abstract
Heavy metal contamination in soil is increasing rapidly due to increasing anthropogenic activities. Despite the importance of rose-scented geranium as a medicinal plant, little attention was paid to enhancing its productivity in heavy metal-polluted soil. In this regard, endophytes improve plant resistance to heavy metal toxicity and enhance its tissue quality. Here, the impact of the three endophytic fungi Talaromyces versatilis (E6651), Emericella nidulans (E6658), and Aspergillus niger (E6657) on geranium growth, tolerance, and tissue quality under cadmium (Cd) stress was investigated. In contrast to E. nidulans, T. versatilis and A. niger enhanced geranium growth and the stimulatory effect was more pronounced under Cd-stress. The three endophytes significantly alleviated Cd accumulation and increased mineral content in geranium leaves. In addition, endophytic fungi successfully alleviated Cd-induced membrane damage and reinforced the antioxidant defenses in geranium leaves. Inoculation with endophytes stimulated all the antioxidant enzymes under Cd-stress, and the response was more obvious in the case of T. versatilis and A. niger. To reduce the toxicity of tissue-Cd levels, T. versatilis and A. niger upregulated the detoxification mechanisms; glutathione-S-transferase, phytochelatin, and metallothionein levels. Moreover, endophytic fungi improved the medicinal value and quality of geranium by increasing total antioxidant capacity (TAC), phenolic compound biosynthesis (phenylalanine ammonia-lyase), and vitamin content as well as the quantity and quality of essential oil, particularly under Cd-stress conditions. The variation in the mechanisms modulated by the different endophytic fungi was supported by Principal Component Analysis (PCA). Overall, this study provided fundamental insights into endophytes' impact as a feasible strategy to mitigate the phytotoxicity hazards of Cd-stress in geranium and enhance its quality, based on the growth and biochemical investigations.
Collapse
Affiliation(s)
- Nadia Mohamed El-Shafey
- Department of Botany and Microbiology, Faculty of Science, Beni-Suef University, Beni-Suef 62511, Egypt; (M.A.M.); (M.M.Y.); (S.A.S.); (H.A.)
| | - Marym A. Marzouk
- Department of Botany and Microbiology, Faculty of Science, Beni-Suef University, Beni-Suef 62511, Egypt; (M.A.M.); (M.M.Y.); (S.A.S.); (H.A.)
| | - Manal M. Yasser
- Department of Botany and Microbiology, Faculty of Science, Beni-Suef University, Beni-Suef 62511, Egypt; (M.A.M.); (M.M.Y.); (S.A.S.); (H.A.)
| | - Salwa A. Shaban
- Department of Botany and Microbiology, Faculty of Science, Beni-Suef University, Beni-Suef 62511, Egypt; (M.A.M.); (M.M.Y.); (S.A.S.); (H.A.)
| | - Gerrit T.S. Beemster
- Integrated Molecular Plant Physiology Research (IMPRES), Department of Biology, University of Antwerp, 2020 Antwerp, Belgium;
| | - Hamada AbdElgawad
- Department of Botany and Microbiology, Faculty of Science, Beni-Suef University, Beni-Suef 62511, Egypt; (M.A.M.); (M.M.Y.); (S.A.S.); (H.A.)
| |
Collapse
|
11
|
Ounoki R, Ágh F, Hembrom R, Ünnep R, Szögi-Tatár B, Böszörményi A, Solymosi K. Salt Stress Affects Plastid Ultrastructure and Photosynthetic Activity but Not the Essential Oil Composition in Spearmint ( Mentha spicata L. var. crispa "Moroccan"). FRONTIERS IN PLANT SCIENCE 2021; 12:739467. [PMID: 34777420 PMCID: PMC8586547 DOI: 10.3389/fpls.2021.739467] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Accepted: 09/16/2021] [Indexed: 06/13/2023]
Abstract
High levels of soil salinity affect plant growth, reproduction, water and ion uptake, and plant metabolism in a complex manner. In this work, the effect of salt stress on vegetative growth, photosynthetic activity, and chloroplast ultrastructure of spearmint (Mentha spicata L. var. crispa "Moroccan") was investigated. After 2 weeks of low concentration treatments (5, 25, and 50 mM NaCl) of freshly cut shoots, we observed that the stem-derived adventitious root formation, which is a major mean for vegetative reproduction among mints, was completely inhibited at 50 mM NaCl concentration. One-week-long, high concentration (150 mM NaCl) salt stress, and isosmotic polyethylene glycol (PEG) 6000 treatments were compared in intact (rooted) plants and freshly cut, i.e., rootless shoots. Our data showed that roots have an important role in mitigating the deleterious effects of both the osmotic (PEG treatment) and specific ionic components of high salinity stress. At 50 mM NaCl or above, the ionic component of salt stress caused strong and irreversible physiological alterations. The effects include a decrease in relative water content, the maximal and actual quantum efficiency of photosystem II, relative chlorophyll content, as well as disorganization of the native chlorophyll-protein complexes as revealed by 77 K fluorescence spectroscopy. In addition, important ultrastructural damage was observed by transmission electron microscopy such as the swelling of the thylakoid lumen at 50 mM NaCl treatment. Interestingly, in almost fully dry leaf regions and leaves, granum structure was relatively well retained, however, their disorganization occurred in leaf chloroplasts of rooted spearmint treated with 150 mM NaCl. This loss of granum regularity was also confirmed in the leaves of these plants using small-angle neutron scattering measurements of intact leaves of 150 mM NaCl-stressed rooted plants. At the same time, solid-phase microextraction of spearmint leaves followed by gas chromatography and mass spectrometry (GC/MS) analyses revealed that the essential oil composition of spearmint was unaffected by the treatments applied in this work. Taken together, the used spearmint cultivar tolerates low salinity levels. However, at 50 mM NaCl concentration and above, the ionic components of the stress strongly inhibit adventitious root formation and thus their clonal propagation, and severely damage the photosynthetic apparatus.
Collapse
Affiliation(s)
- Roumaissa Ounoki
- Department of Plant Anatomy, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Ferenc Ágh
- Department of Plant Anatomy, ELTE Eötvös Loránd University, Budapest, Hungary
- Department of Pharmacognosy, Semmelweis University, Budapest, Hungary
| | - Richard Hembrom
- Department of Plant Anatomy, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Renáta Ünnep
- Neutron Spectroscopy Department, Center for Energy Research, Budapest, Hungary
| | | | | | - Katalin Solymosi
- Department of Plant Anatomy, ELTE Eötvös Loránd University, Budapest, Hungary
| |
Collapse
|