1
|
Massafra A, Forlani S, Periccioli L, Rotasperti L, Mizzotti C, Mariotti L, Tagliani A, Masiero S. NAC100 regulates silique growth during the initial phase of fruit development through the gibberellin biosynthetic pathway. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2025; 352:112344. [PMID: 39638093 DOI: 10.1016/j.plantsci.2024.112344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 10/31/2024] [Accepted: 12/01/2024] [Indexed: 12/07/2024]
Abstract
The NAC transcription factor family is a large class of DNA-binding proteins found in several plant species. In the model plant Arabidopsis thaliana, NAC transcription factors are expressed in different organs, and they are known to modulate many diverse developmental processes, such as meristem formation, flower and fruit development, leaf and fruit senescence. From a previous time-lapse transcriptomic analysis of developing siliques performed by our group, we found a NAC transcription factor, NAC100, that is upregulated during silique development. In this work, we characterized the role of the NAC100 transcription factor and demonstrated that NAC100 contributes to regulating silique growth during the initial phase of their development. nac100 mutant siliques are smaller but such defects can be rescued through the application of exogenous bioactive gibberellin. Gene expression analysis, transactivation assay and endogenous gibberellin quantification indicate that NAC100 modulates gibberellin metabolism, by both directly and indirectly regulating GA-metabolic genes expression, ultimately affecting silique elongation.
Collapse
Affiliation(s)
- Annamaria Massafra
- Department of Biosciences, Università degli Studi di Milano, Milan, Italy
| | - Sara Forlani
- Department of Biosciences, Università degli Studi di Milano, Milan, Italy
| | - Lorenzo Periccioli
- Department of Biosciences, Università degli Studi di Milano, Milan, Italy
| | - Lisa Rotasperti
- Department of Biosciences, Università degli Studi di Milano, Milan, Italy
| | - Chiara Mizzotti
- Department of Biosciences, Università degli Studi di Milano, Milan, Italy
| | - Lorenzo Mariotti
- Department of Agriculture, Food and Environment, University of Pisa, Pisa 56124, Italy
| | - Andrea Tagliani
- Department of Biosciences, Università degli Studi di Milano, Milan, Italy.
| | - Simona Masiero
- Department of Biosciences, Università degli Studi di Milano, Milan, Italy.
| |
Collapse
|
2
|
Silvestri A, Bansal C, Rubio-Somoza I. After silencing suppression: miRNA targets strike back. TRENDS IN PLANT SCIENCE 2024; 29:1266-1276. [PMID: 38811245 DOI: 10.1016/j.tplants.2024.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 04/26/2024] [Accepted: 05/08/2024] [Indexed: 05/31/2024]
Abstract
Within the continuous tug-of-war between plants and microbes, RNA silencing stands out as a key battleground. Pathogens, in their quest to colonize host plants, have evolved a diverse arsenal of silencing suppressors as a common strategy to undermine the host's RNA silencing-based defenses. When RNA silencing malfunctions in the host, genes that are usually targeted and silenced by microRNAs (miRNAs) become active and can contribute to the reprogramming of host cells, providing an additional defense mechanism. A growing body of evidence suggests that miRNAs may act as intracellular sensors to enable a rapid response to pathogen threats. Herein we review how plant miRNA targets play a crucial role in immune responses against different pathogens.
Collapse
Affiliation(s)
- Alessandro Silvestri
- Molecular Reprogramming and Evolution Laboratory, Centre for Research in Agricultural Genomics, 08193 Barcelona, Spain
| | - Chandni Bansal
- Molecular Reprogramming and Evolution Laboratory, Centre for Research in Agricultural Genomics, 08193 Barcelona, Spain
| | - Ignacio Rubio-Somoza
- Molecular Reprogramming and Evolution Laboratory, Centre for Research in Agricultural Genomics, 08193 Barcelona, Spain; Consejo Superior de Investigaciones Científicas (CSIC), Barcelona 08001, Spain.
| |
Collapse
|
3
|
Xu D, Yang L. Spatial regulation of immunity: unmasking the secrets of abaxial immunity to powdery mildew. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:1213-1216. [PMID: 38416207 PMCID: PMC10901199 DOI: 10.1093/jxb/erae019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/29/2024]
Abstract
This article comments on: Wu Y, Sexton WK, Zhang Q, Bloodgood D, Wu Y, Hooks C, Coker F, Vasquez A, Wei C-I, Xiao S. 2024. Leaf abaxial immunity to powdery mildew in Arabidopsis is conferred by multiple defense mechanisms. Journal of Experimental Botany 75, 1465-1478.
Collapse
Affiliation(s)
- Dawei Xu
- Department of Plant Pathology, College of Agricultural & Environmental Sciences, University of Georgia, Athens, GA 30602, USA
| | - Li Yang
- Department of Plant Pathology, College of Agricultural & Environmental Sciences, University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
4
|
Sicilia A, Russo R, Catara V, Lo Piero AR. Hub Genes and Pathways Related to Lemon ( Citrus limon) Leaf Response to Plenodomus tracheiphilus Infection and Influenced by Pseudomonas mediterranea Biocontrol Activity. Int J Mol Sci 2024; 25:2391. [PMID: 38397068 PMCID: PMC10889467 DOI: 10.3390/ijms25042391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 02/12/2024] [Accepted: 02/14/2024] [Indexed: 02/25/2024] Open
Abstract
The lemon industry in the Mediterranean basin is strongly threatened by "mal secco" disease (MSD) caused by the fungus Plenodomus tracheiphlilus. Leaf pretreatments with Pseudomonas mediterranea 3C have been proposed as innovative tools for eco-sustainable interventions aimed at controlling the disease. In this study, by exploiting the results of previously performed RNAseq analysis, WCGNA was conducted among gene expression patterns in both inoculated (Pt) and pretreated and fungus-inoculated lemon plants (Citrus limon L.) (3CPt), and two indicators of fungal infection, i.e., the amount of fungus DNA measured in planta and the disease index (DI). The aims of this work were (a) to identify gene modules significantly associated with those traits, (b) to construct co-expression networks related to mal secco disease; (c) to define the effect and action mechanisms of P. mediterranea by comparing the networks. The results led to the identification of nine hub genes in the networks, with three of them belonging to receptor-like kinases (RLK), such as HERK1, CLAVATA1 and LRR, which play crucial roles in plant-pathogen interaction. Moreover, the comparison between networks indicated that the expression of those receptors is not induced in the presence of P. mediterranea, suggesting how powerful WCGNA is in discovering crucial genes that must undergo further investigation and be eventually knocked out.
Collapse
Affiliation(s)
| | | | | | - Angela Roberta Lo Piero
- Department of Agriculture, Food and Environment, University of Catania, 95123 Catania, Italy; (A.S.); (R.R.); (V.C.)
| |
Collapse
|
5
|
Sinha S, Sahadevan S, Ohno C, Ram H, Heisler MG. Global gene regulatory network underlying miR165a in Arabidopsis shoot apical meristem. Sci Rep 2023; 13:22258. [PMID: 38097643 PMCID: PMC10721644 DOI: 10.1038/s41598-023-49093-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Accepted: 12/04/2023] [Indexed: 12/17/2023] Open
Abstract
Arabidopsis microRNA165a (miR165a) targets Class III Homeodomain Leucine-Zipper (HD-ZIPIII) transcription factors to regulate various aspects of plant development and stress response. Over-expression of miR165a mimics the loss-of-function phenotype of HD-ZIPIII genes and leading to ectopic organ formation, shoot apical meristem (SAM) termination, loss of leaf polarity, and defective vasculature development. However, the molecular mechanisms underlying these phenotypes remain unresolved. Here, we over-expressed miR165a in a dexamethasone inducible manner and identified differentially expressed genes in the SAM through RNA-Seq. Simultaneously, using multi-channel FACS combined with RNA-Seq approach, we characterized global transcriptome patterns in miR165a expressing cell-types compared to HD-ZIPIII expressing cell-types and other cell-types in SAM. By integrating our results we identified sets of genes which are up-regulated by miR165a as well have enriched expression in miR165a cell-types, and vice-versa. Known plant development related genes such as HD-ZIPIII and their targets LITTLE ZIPPERs, Like AUXIN RESISTANT 2, BEL1-like homeodomain 6, ROTUNDIFOLIA like 16 were found to be down-regulated. Among the up-regulated genes, GIBBERELLIN 2-OXIDASEs, various elemental transporters (YSL3, ZIFL1, SULTR), and other transporter genes were prominent. Thus, the genes identified in this study help to unravel the molecular mechanism of miR165a and HD-ZIPIII regulated plant development and stress response.
Collapse
Affiliation(s)
- Sonali Sinha
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, JNU Campus, New Delhi, 110067, India
| | - Sudeep Sahadevan
- European Molecular Biology Laboratory, Meyerhofstrasse 1, Heidelberg, Germany
| | - Carolyn Ohno
- European Molecular Biology Laboratory, Meyerhofstrasse 1, Heidelberg, Germany
- School of Life and Environmental Sciences, University of Sydney, Sydney, NSW, Australia
| | - Hasthi Ram
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, JNU Campus, New Delhi, 110067, India.
- European Molecular Biology Laboratory, Meyerhofstrasse 1, Heidelberg, Germany.
| | - Marcus G Heisler
- European Molecular Biology Laboratory, Meyerhofstrasse 1, Heidelberg, Germany.
- School of Life and Environmental Sciences, University of Sydney, Sydney, NSW, Australia.
| |
Collapse
|
6
|
The Non-JAZ TIFY Protein TIFY8 of Arabidopsis thaliana Interacts with the HD-ZIP III Transcription Factor REVOLUTA and Regulates Leaf Senescence. Int J Mol Sci 2023; 24:ijms24043079. [PMID: 36834490 PMCID: PMC9967580 DOI: 10.3390/ijms24043079] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 02/01/2023] [Accepted: 02/02/2023] [Indexed: 02/08/2023] Open
Abstract
The HD-ZIP III transcription factor REVOLUTA (REV) is involved in early leaf development, as well as in leaf senescence. REV directly binds to the promoters of senescence-associated genes, including the central regulator WRKY53. As this direct regulation appears to be restricted to senescence, we aimed to characterize protein-interaction partners of REV which could mediate this senescence-specificity. The interaction between REV and the TIFY family member TIFY8 was confirmed by yeast two-hybrid assays, as well as by bimolecular fluorescence complementation in planta. This interaction inhibited REV's function as an activator of WRKY53 expression. Mutation or overexpression of TIFY8 accelerated or delayed senescence, respectively, but did not significantly alter early leaf development. Jasmonic acid (JA) had only a limited effect on TIFY8 expression or function; however, REV appears to be under the control of JA signaling. Accordingly, REV also interacted with many other members of the TIFY family, namely the PEAPODs and several JAZ proteins in the yeast system, which could potentially mediate the JA-response. Therefore, REV appears to be under the control of the TIFY family in two different ways: a JA-independent way through TIFY8, which controls REV function in senescence, and a JA-dependent way through PEAPODs and JAZ proteins.
Collapse
|
7
|
Hajibarat Z, Saidi A. Senescence-associated proteins and nitrogen remobilization in grain filling under drought stress condition. J Genet Eng Biotechnol 2022; 20:101. [PMID: 35819732 PMCID: PMC9276853 DOI: 10.1186/s43141-022-00378-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 06/14/2022] [Indexed: 11/25/2022]
Abstract
Background Plants use escape strategies including premature senescence and leaf reduction to cope in response to drought stress, which in turn reduces plant leaves and photosynthesis. This strategy allows the new generation (seeds) to survive under drought but, plants experience more yield loss during stress condition. The amount of damage caused by drought stress is compensated by the expression of genes involved in regulating leaf aging. Leaf senescence alters the expression of thousands of genes and ultimately affecting grain protein content, grain yield, and nitrogen utilization efficiency. Also, under drought stress, nitrogen in the soil will not become as much available and causes the beginning and acceleration of the senescence process of leaves. The main body of the abstract This review identified proteins signaling and functional proteins involved in senescence. Further, transcription factors and cell wall degradation enzymes (proteases) related to senescence during drought stress were surveyed. We discuss the regulatory pathways of genes as a result of the degradation of proteins during senescence process. Senescence is strongly influenced by plant hormones and environmental factors including the availability of nitrogen. During maturity or drought stress, reduced nitrogen uptake can cause nitrogen to be remobilized from leaves and stems to seeds, eventually leading to leaf senescence. Under these conditions, genes involved in chloroplast degradation and proteases show increased expression. The functional (proteases) and regulatory proteins such as protein kinases and phosphatases as well as transcription factors (AP2/ERF, NAC, WRKY, MYB, and bZIP) are involved in leaf senescence and drought stress. Short conclusion In this review, senescence-associated proteins involved in leaf senescence and regulatory and functional proteins in response to drought stress during grain filling were surveyed. The present study predicts on the role of nitrogen transporters, transcription factors and regulatory genes involved in the late stages of plant growth with the aim of understanding their mechanisms of action during grain filling stage. For a better understanding, the relevant evidence for the balance between grain filling and protein breakdown during grain filling in cereals is presented.
Collapse
Affiliation(s)
- Zohreh Hajibarat
- Department of Plant Sciences and Biotechnology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
| | - Abbas Saidi
- Department of Plant Sciences and Biotechnology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran.
| |
Collapse
|
8
|
Lan W, Zheng S, Yang P, Qiu Y, Xu Y, Miao Y. Establishment of a Landscape of UPL5-Ubiquitinated on Multiple Subcellular Components of Leaf Senescence Cell in Arabidopsis. Int J Mol Sci 2022; 23:5754. [PMID: 35628561 PMCID: PMC9145402 DOI: 10.3390/ijms23105754] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 05/16/2022] [Accepted: 05/17/2022] [Indexed: 02/04/2023] Open
Abstract
Catabolism of macromolecules is a major event in senescent cells, especially involving proteolysis of organelles and abnormally aggregated proteins, circulation of nutrients, and precise control of intracellular environmental balance. Proteasomes are distributed in the nucleus and cytoplasm; however, proteasomes in organelles are limited. In this study, multi-omics proteomic analyses of ubiquitinated proteins enriched by using antibody against "di-Gly-Lys" via a free labeling were used to investigate the global changes of protein levels and ubiquitination modification levels of upl5 mutant relative to wild-type plant; subcellular localization analysis of UPL5 was found to be located in the nucleus, cytoplasm, and plastid within the cell; and the direct lysine site patterns of UPL5 were screened by the H89R substitution in the tagged ubiquitinated assay. It suggests that UPL5 acting as a candidate of organelle E3 ligase either in the nucleus or cytoplasm or plastid modifies numerous targets related to nuclear transcription and plastid photosynthesis involving in Ca2+ and hormone signaling pathway in plant senescence and in response to (a)biotic stress protection.
Collapse
Affiliation(s)
| | | | | | | | | | - Ying Miao
- Fujian Provincial Key Laboratory of Plant Functional Biology, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (W.L.); (S.Z.); (P.Y.); (Y.Q.); (Y.X.)
| |
Collapse
|