1
|
Tan WT, Zhou H, Tang SF, Chen Q, Zhou X, Liu XH, Zeng P, Gu JF, Liao BH. Simultaneous alleviation of Cd availability in contaminated soil and accumulation in rice (Oryza sativa L.) by Fe-Mn oxide-modified biochar. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 858:159730. [PMID: 36306853 DOI: 10.1016/j.scitotenv.2022.159730] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 10/20/2022] [Accepted: 10/22/2022] [Indexed: 06/16/2023]
Abstract
Fe-Mn oxide-modified biochar (BC-FM) was used to remediate Cd-contaminated soil and mitigate Cd accumulation in rice. The roles of Fe and Mn in soil Cd immobilization and in controlling Cd uptake by rice were investigated via X-ray photoelectron spectroscopy (XPS) characterization and chemical analysis. Fe and Mn loaded on BC-FM increased the removal efficiencies of CaCl2 extractable Cd in soil and Cd in pore water compared to those in only biochar (BC)-treated soil, with maximum removal rates at 67.9 % and 77.8 %, respectively. The XPS results indicated that the redox reactions of the Fe-Mn oxides on BC-FM surface affected Cd immobilization in the soil. The Fe (II/III) components on BC-FM were primarily converted to Fe3O4 in the soil system, which may form stable complexes with Cd2+ (Fe-O-Cd) during the entire rice growth period, and Cd may be bound to MnO or Mn2O3 in the form of CdMn2O4. The excellent adsorption performance of BC-FM enhanced by Fe-Mn oxides reduced the available Cd in the soil and stimulated Fe and Mn transport in rice, thereby inhibiting Cd accumulation in the aerial parts of rice. Cd concentrations in brown rice under BC-FM treatments reached the national safety standard (0.2 mg/kg, GB2762-2017). And BC-FM significantly increased the biomass of brown rice with a maximum rate of 26.8 %. These findings suggest that BC-FM could be used as an efficient material for Cd-contaminated soil remediation, and Fe-Mn plays important role in immobilizing Cd in soil and reducing Cd transport in rice.
Collapse
Affiliation(s)
- Wen-Tao Tan
- College of Environment Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
| | - Hang Zhou
- College of Environment Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China; Hunan Engineering Laboratory for Control of Rice Quality and Safety, Changsha 410004, China.
| | - Shang-Feng Tang
- College of Environment Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
| | - Qiong Chen
- College of Environment Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
| | - Xia Zhou
- College of Environment Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
| | - Xin-Hui Liu
- College of Environment Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
| | - Peng Zeng
- College of Environment Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China; Hunan Engineering Laboratory for Control of Rice Quality and Safety, Changsha 410004, China
| | - Jiao-Feng Gu
- College of Environment Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China; Hunan Engineering Laboratory for Control of Rice Quality and Safety, Changsha 410004, China
| | - Bo-Han Liao
- College of Environment Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China; Hunan Engineering Laboratory for Control of Rice Quality and Safety, Changsha 410004, China
| |
Collapse
|
2
|
Li X, Zhou L, Zhang C, Li D, Wang Z, Sun D, Liao C, Zhang Q. Spatial distribution and risk assessment of fluorine and cadmium in rice, corn, and wheat grains in most karst regions of Guizhou province, China. Front Nutr 2022; 9:1014147. [PMID: 36337645 PMCID: PMC9626765 DOI: 10.3389/fnut.2022.1014147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 10/03/2022] [Indexed: 11/29/2022] Open
Abstract
The pollution status of crops planted in Guizhou province of Southwestern China with high background values of Fluorine (F) and Cadmium (Cd) has attracted people’s concern. The present study aimed to investigate the spatial distributions of F and Cd in rice, corn and wheat grains, and further evaluate their health risks to residents in Guizhou province. The contents of F and Cd were measured by fluoride ion-selective electrode and inductively coupled plasma mass spectrometry (ICP-MS) methods, respectively. Additionally, the inverse distance weighted (IDW) technique was conducted to analyze spatial distribution, and the health risk was estimated by target hazard quotient (THQ) and hazardous index (HI). The results indicate that Cd contents in samples varied from 0.000 to 0.463 for rice, 0.000 to 0.307 for corn, and 0.012 to 0.537 (mg/kg) for wheat, while F contents ranged from 0.825 to 5.193 (rice), 0.946 to 8.485 (corn), and 0.271 to 9.143 (wheat) mg/kg. The Cd exceeding ratios were 11.600% for rice, 13.500% for corn, and 45.100% for wheat grains, respectively. In terms of spatial distribution, high levels of F and Cd in rice were found in the northern and central in Guizhou, while Cd in corn was distributed in the eastern and F in corn were distributed in the west area of Guizhou. Moreover, the high levels of F and Cd in wheat were distributed in the western and eastern areas. The mean carcinogenic risks (R) of Cd in rice, corn, and wheat in children were 4.150 × 10–4, 1.670 × 10–4 and 3.470 × 10–4, respectively, and that in adults were 3.430 × 10–4, 0.471 × 10–4, and 2.190 × 10–4, respectively. The HI for adults in rice, corn and wheat grains were 0.756, 0.154, and 0.514, respectively, and that for children were 0.913, 0.549, and 0.814, respectively. Collectively, the potential risks produced by F and Cd to the local residents should not be ignored.
Collapse
Affiliation(s)
- Xiangxiang Li
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Public Health, Guizhou Medical University, Guiyang, China
| | - Luoxiong Zhou
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Public Health, Guizhou Medical University, Guiyang, China
| | - Cheng Zhang
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Public Health, Guizhou Medical University, Guiyang, China
| | - Dasuan Li
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Public Health, Guizhou Medical University, Guiyang, China
| | - Zelan Wang
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Public Health, Guizhou Medical University, Guiyang, China
| | - Dali Sun
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Public Health, Guizhou Medical University, Guiyang, China
| | - Chaoxuan Liao
- Guizhou Academy of Testing and Analysis, Guiyang, China
| | - Qinghai Zhang
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Public Health, Guizhou Medical University, Guiyang, China
- *Correspondence: Qinghai Zhang,
| |
Collapse
|