1
|
Kardos G, Laczkó L, Kaszab E, Timmer B, Szarka K, Prépost E, Bányai K. Phylogenetic Analysis of the Genes in D-Ala-D-Lactate Synthesizing Glycopeptide Resistance Operons: The Different Origins of Functional and Regulatory Genes. Antibiotics (Basel) 2024; 13:573. [PMID: 39061255 PMCID: PMC11273654 DOI: 10.3390/antibiotics13070573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 05/27/2024] [Accepted: 05/29/2024] [Indexed: 07/28/2024] Open
Abstract
The phylogenetic relationships of glycopeptide resistance proteins were investigated. The amino acid sequences of vanA, vanB, vanR and vanS were used as queries to search against bacterial genomes in the NCBI RefSeq database. Hits with >60% amino acid identity and >90% query coverage were aligned, and phylogenetic trees were reconstructed. The ligase gene phylogenies were highly similar for both queries, revealing two major clusters. One contained [[vanA:vanM][vanB:vanD]vanF] and related proteins, with proteins from different Bacillaceae, mostly from Paenibacillus spp., in basal positions to all, except vanB. Ligases from streptomycetes formed the other cluster. The relative positions of vanH and vanX differed from those of the associated ligases, but the basal position of the Paenibacillus spp. and the separation of proteins of Streptomyces origin were similar. The accessory genes vanW, vanY and vanZ were associated with vanB, vanA/vanM and vanA, respectively; the basal branches were always proteins from different Bacillaceae but never from streptomycetes. Multiple homologs of the regulatory genes vanR and vanS were found in the genomes; those associated with the different ligases were unique to the ligases. Similarly to the accessory genes, vanRS from Bacillales and Clostridia, but never from streptomycetes, was found in the basal positions. In conclusion, the core genes vanA/B/D/F/M, vanH and vanX originate most probably from glycopeptide-producing streptomycetes, with Paenibacillus spp. (or other Bacillaceae) mediating the transfer, while the accessory genes and the regulatory apparatus probably originate from these Bacillaceae.
Collapse
Affiliation(s)
- Gábor Kardos
- Institute of Metagenomics, University of Debrecen, H-4032 Debrecen, Hungary; (B.T.); (K.S.)
- One Health Institute, Faculty of Health Sciences, University of Debrecen, H-4032 Debrecen, Hungary; (L.L.); (E.K.)
| | - Levente Laczkó
- One Health Institute, Faculty of Health Sciences, University of Debrecen, H-4032 Debrecen, Hungary; (L.L.); (E.K.)
- HUN-REN-UD Conservation Biology Research Group, H-4032 Debrecen, Hungary
| | - Eszter Kaszab
- One Health Institute, Faculty of Health Sciences, University of Debrecen, H-4032 Debrecen, Hungary; (L.L.); (E.K.)
- Department of Microbiology and Infectious Diseases, University of Veterinary Medicine, H-1078 Budapest, Hungary
| | - Bálint Timmer
- Institute of Metagenomics, University of Debrecen, H-4032 Debrecen, Hungary; (B.T.); (K.S.)
- Department of Medical Microbiology and Immunology, University of Pécs, H-7624 Pécs, Hungary
| | - Krisztina Szarka
- Institute of Metagenomics, University of Debrecen, H-4032 Debrecen, Hungary; (B.T.); (K.S.)
- One Health Institute, Faculty of Health Sciences, University of Debrecen, H-4032 Debrecen, Hungary; (L.L.); (E.K.)
| | - Eszter Prépost
- Department of Health Industry, University of Debrecen, H-4032 Debrecen, Hungary;
| | - Krisztián Bányai
- Pathogen Discovery Group, HUN-REN Veterinary Medical Research Institute, H-1143 Budapest, Hungary
- National Laboratory for Infectious Animal Diseases, Antimicrobial Resistance, Veterinary Public Health and Food Chain Safety, H-1143 Budapest, Hungary
- Department of Pharmacology and Toxicology, University of Veterinary Medicine, H-1078 Budapest, Hungary
| |
Collapse
|
2
|
Al Rubaye M, Janice J, Bjørnholt JV, Löhr IH, Sundsfjord A, Hegstad K. The first vanE-type vancomycin resistant Enterococcus faecalis isolates in Norway - phenotypic and molecular characteristics. J Glob Antimicrob Resist 2024; 36:193-199. [PMID: 38154751 DOI: 10.1016/j.jgar.2023.12.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 12/12/2023] [Accepted: 12/19/2023] [Indexed: 12/30/2023] Open
Abstract
OBJECTIVES We aimed to characterize the vanE cluster and its genetic support in the first Norwegian vanE-type isolates and assess genetic relatedness to other vanE isolates. METHODS Two vanE-type vancomycin resistant Enterococcus faecalis (vanE-VREfs) isolates (E1 and E2) recovered from the same patient 30 months apart were examined for antimicrobial susceptibility, genome sequence, vancomycin resistance induction, vanE transferability, genome mutation rate, and phylogenetic relationship to E. faecalis closed genomes and two vanE-VREfs from North America. RESULTS The ST34 E1 and E2 strains expressed low-level vancomycin resistance and susceptibility to teicoplanin. Their vanE gene clusters were part of a non-transferable Tn6202. The histidine kinase part of vanSE was expressed although a premature stop codon (E1) and insertion of a transposase (E2) truncated their vanSE gene. The vancomycin resistance phenotype in E1 was inducible while constitutive in E2. E1 showed a 125-fold higher mutation rate than E2. Variant calling showed 60 variants but nearly identical chromosomal gene content and synteny between the isolates. Their genomes also showed high similarity to another ST34 vanE-VREfs from Canada. CONCLUSION In-depth genomic analyses of the first two vanE-VREfs found in Europe identified a single chromosomal insertion site of two variants of vanE-conferring Tn6202. Single nucleotide polymorphism (SNP) and core genome multilocus sequence type (cgMLST) analyses show the genomes are different. This can be explained by the high mutation rate of E1 and acquisition of different mobile genetic elements; thus, we believe the two isolates from the same patient are genetically related. Genome similarities also suggest relatedness between the Canadian and Norwegian vanE-VREfs.
Collapse
Affiliation(s)
- Mushtaq Al Rubaye
- Research group for Host-Microbe Interactions, Department of Medical Biology, UiT The Arctic University of Norway, Tromsø, Norway
| | - Jessin Janice
- Research group for Host-Microbe Interactions, Department of Medical Biology, UiT The Arctic University of Norway, Tromsø, Norway; Norwegian National Advisory Unit on Detection of Antimicrobial Resistance, Department of Microbiology and Infection Control, University Hospital of North Norway, Tromsø, Norway
| | - Jørgen Vildershøj Bjørnholt
- Department of Clinical Microbiology, Oslo University Hospital, Oslo, Norway; Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Iren H Löhr
- Department of Medical Microbiology, Stavanger University Hospital, Stavanger, Norway; Department of Clinical Science, Faculty of Medicine, University of Bergen, Bergen, Norway
| | - Arnfinn Sundsfjord
- Research group for Host-Microbe Interactions, Department of Medical Biology, UiT The Arctic University of Norway, Tromsø, Norway; Norwegian National Advisory Unit on Detection of Antimicrobial Resistance, Department of Microbiology and Infection Control, University Hospital of North Norway, Tromsø, Norway
| | - Kristin Hegstad
- Research group for Host-Microbe Interactions, Department of Medical Biology, UiT The Arctic University of Norway, Tromsø, Norway; Norwegian National Advisory Unit on Detection of Antimicrobial Resistance, Department of Microbiology and Infection Control, University Hospital of North Norway, Tromsø, Norway.
| |
Collapse
|
3
|
Wagner TM, Pöntinen AK, Al Rubaye M, Sundsfjord A, Hegstad K. Adaptive cell wall thickening in Enterococcus faecalis is associated with decreased vancomycin susceptibility. Clin Microbiol Infect 2024; 30:396.e1-396.e5. [PMID: 38065364 DOI: 10.1016/j.cmi.2023.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 11/28/2023] [Accepted: 12/02/2023] [Indexed: 12/25/2023]
Abstract
OBJECTIVES Enterococcus faecalis can adopt both a commensal and a nosocomial lifestyle, resisting numerous antibiotics. In this study, we aim to investigate the relationship between the cell wall (CW) thickness and decreased susceptibility to vancomycin (VD) in van-gene negative clinical isolates of E. faecalis (nMIC 8 = 2, nMIC 4 = 3, ST30, ST40, and ST59). METHODS The CW thickness was assessed in VD strains and compared with vancomycin susceptible isolates of the same sequence type (ST) (Vancomycin susceptible [VS]; nMIC 2 = 5). The VD and VS strains were subjected to serial passage (evolved [ev]) with and without vancomycin selection. Subsequent measurements of CW thickness and vancomycin MICs were performed. RESULTS The VD strains exhibited increased CW thickness when compared with ST-related VS strains (ΔCW thickness VD vs. VS ST30 25 nm, ST59 15 nm, and ST40 1 nm). Serial passages without vancomycin selection led to a decrease in CW thickness and vancomycin MIC in VD strains (ΔCW thickness VD vs. evVD ST30 22 nm, ST59 3 nm, and ST40 2 nm). Serial passages with vancomycin selection caused an increase in CW thickness and vancomycin MIC in ST-related VS strains (ΔCW thickness VS vs. evVS ST30 22 nm, ST59 16 nm, and ST40 1 nm). DISCUSSION Adaptive changes in CW thickness were observed in response to vancomycin exposure. Increased CW thickness correlated with decreased vancomycin susceptibility, whereas decreased CW thickness correlated with increased vancomycin susceptibility. Core single nucleotide polymorphisms in the evolved mutants were mostly found in genes encoding proteins associated with the cytoplasm or the cytoplasmic membrane. The potential relevance of these adaptive changes is underlined by the observed phenotypes in clinical isolates. Our findings emphasize the importance of monitoring adaptive changes, as vancomycin-resistant enterococci infections are a growing concern.
Collapse
Affiliation(s)
- Theresa Maria Wagner
- Research Group for Host-Microbe Interactions, Department of Medical Biology, Faculty of Health Sciences, UiT The Arctic University of Norway, Tromsø, Norway
| | - Anna K Pöntinen
- Norwegian National Advisory Unit on Detection of Antimicrobial Resistance, Department of Microbiology and Infection Control, University Hospital of North Norway, Tromsø, Norway; Department of Biostatistics, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Mushtaq Al Rubaye
- Research Group for Host-Microbe Interactions, Department of Medical Biology, Faculty of Health Sciences, UiT The Arctic University of Norway, Tromsø, Norway
| | - Arnfinn Sundsfjord
- Research Group for Host-Microbe Interactions, Department of Medical Biology, Faculty of Health Sciences, UiT The Arctic University of Norway, Tromsø, Norway; Norwegian National Advisory Unit on Detection of Antimicrobial Resistance, Department of Microbiology and Infection Control, University Hospital of North Norway, Tromsø, Norway
| | - Kristin Hegstad
- Research Group for Host-Microbe Interactions, Department of Medical Biology, Faculty of Health Sciences, UiT The Arctic University of Norway, Tromsø, Norway; Norwegian National Advisory Unit on Detection of Antimicrobial Resistance, Department of Microbiology and Infection Control, University Hospital of North Norway, Tromsø, Norway.
| |
Collapse
|
4
|
Baines SL, Guérillot R, Ballard S, Johnson PDR, Stinear TP, Roberts S, Howden BP. Genomic investigation of the emergence of vanD vancomycin-resistant Enterococcus faecium. Access Microbiol 2023; 5:000712.v3. [PMID: 38188239 PMCID: PMC10765050 DOI: 10.1099/acmi.0.000712.v3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 11/21/2023] [Indexed: 01/09/2024] Open
Abstract
Vancomycin-resistant Enterococcus (VRE) is an increasingly identified cause of human disease, with most infections resulting from the vanA and vanB genotypes; less is known about other clinically relevant genotypes. Here we report a genomic exploration of a vanD VRE faecium (VREfm), which arose de novo during a single infectious episode. The genomes of the vancomycin-susceptible E. faecium (VSEfm) recipient and resulting VREfm were subjected to long-read sequencing and closed, with whole-genome alignments, cross-mapping and orthologue clustering used to identify genomic variation. Three key differences were identified. (i) The VREfm chromosome gained a 142.6 kb integrative conjugative element (ICE) harbouring the vanD locus. (ii) The native ligase (ddl) was disrupted by an ISEfm1 insertion. (iii) A large 1.74 Mb chromosomal inversion of unknown consequence occurred. Alignment and phylogenetic-based comparisons of the VREfm with a global collection of vanD-harbouring genomes identified strong similarities in the 120-160 kb genomic region surrounding vanD, suggestive of a common mobile element and integration site, irrespective of the diverse taxonomic, geographical and host origins of the isolates. This isolate diversity revealed that this putative ICE (and its source) is globally disseminated and is capable of being acquired by different genera. Although the incidence of vanD VREfm is low, understanding its emergence and potential for spread is crucial for the ongoing efforts to reduce antimicrobial resistance.
Collapse
Affiliation(s)
- Sarah L. Baines
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Romain Guérillot
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Susan Ballard
- Microbiological Diagnostic Unit Public Health Laboratory, Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Paul D. R. Johnson
- Department of Infectious Diseases, Austin Health, Melbourne, Victoria, Australia
| | - Timothy P. Stinear
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Sally Roberts
- Department of Microbiology, LabPlus, Auckland City Hospital, Auckland, New Zealand
| | - Benjamin P. Howden
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
- Microbiological Diagnostic Unit Public Health Laboratory, Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| |
Collapse
|
5
|
AL Rubaye M, Janice J, Bjørnholt JV, Kacelnik O, Haldorsen BC, Nygaard RM, Hegstad J, Sundsfjord A, Hegstad K, the Norwegian VRE study group. The population structure of vancomycin-resistant and -susceptible Enterococcus faecium in a low-prevalence antimicrobial resistance setting is highly influenced by circulating global hospital-associated clones. Microb Genom 2023; 9:001160. [PMID: 38112685 PMCID: PMC10763505 DOI: 10.1099/mgen.0.001160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 12/01/2023] [Indexed: 12/21/2023] Open
Abstract
Between 2010 and 2015 the incidence of vancomycin-resistant Enterococcus faecium (VREfm) in Norway increased dramatically. Hence, we selected (1) a random subset of vancomycin-resistant enterococci (VRE) from the Norwegian Surveillance System for Communicable Diseases (2010-15; n=239) and (2) Norwegian vancomycin-susceptible E. faecium (VSEfm) bacteraemia isolates from the national surveillance system for antimicrobial resistance in microbes (2008 and 2014; n=261) for further analysis. Whole-genome sequences were collected for population structure, van gene cluster, mobile genetic element and virulome analysis, as well as antimicrobial susceptibility testing. Comparative genomic and phylogeographical analyses were performed with complete genomes of global E. faecium strains from the National Center for Biotechnology Information (NCBI) (1946-2022; n=272). All Norwegian VREfm and most of the VSEfm clustered with global hospital-associated sequence types (STs) in the phylogenetic subclade A1. The vanB2 subtype carried by chromosomal Tn1549 integrative conjugative elements was the dominant van type. The major Norwegian VREfm cluster types (CTs) were in accordance with concurrent European CTs. The dominant vanB-type VREfm CTs, ST192-CT3/26 and ST117-CT24, were mostly linked to a single hospital in Norway where the clones spread after independent chromosomal acquisition of Tn1549. The less prevalent vanA VRE were associated with more diverse CTs and vanA carrying Inc18 or RepA_N plasmids with toxin-antitoxin systems. Only 5 % of the Norwegian VRE were Enterococcus faecalis, all of which contained vanB. The Norwegian VREfm and VSEfm isolates harboured CT-specific virulence factor (VF) profiles supporting biofilm formation and colonization. The dominant VREfm CTs in general hosted more virulence determinants than VSEfm. The phylogenetic clade B VSEfm isolates (n=21), recently classified as Enterococcus lactis, harboured fewer VFs than E. faecium in general, and particularly subclade A1 isolates. In conclusion, the population structure of Norwegian E. faecium isolates mirrors the globally prevalent clones and particularly concurrent European VREfm/VSEfm CTs. Novel chromosomal acquisition of vanB2 on Tn1549 from the gut microbiota, however, formed a single major hospital VREfm outbreak. Dominant VREfm CTs contained more VFs than VSEfm.
Collapse
Affiliation(s)
- Mushtaq AL Rubaye
- Research group for Host–Microbe Interactions, Department of Medical Biology, UiT The Arctic University of Norway, Tromsø, Norway
| | - Jessin Janice
- Research group for Host–Microbe Interactions, Department of Medical Biology, UiT The Arctic University of Norway, Tromsø, Norway
- Norwegian National Advisory Unit on Detection of Antimicrobial Resistance, Department of Microbiology and Infection Control, University Hospital of North Norway, Tromsø, Norway
- Present address: Section for development, Department of Microbiology, Clinic for Laboratory Medicine, Oslo University Hospital, Oslo, Norway
| | - Jørgen Vildershøj Bjørnholt
- Department of Clinical Microbiology, Oslo University Hospital, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Oliver Kacelnik
- Department of Antibiotic Resistance and Infection Prevention, Norwegian Institute of Public Health, Oslo, Norway
| | - Bjørg C. Haldorsen
- Norwegian National Advisory Unit on Detection of Antimicrobial Resistance, Department of Microbiology and Infection Control, University Hospital of North Norway, Tromsø, Norway
| | - Randi M. Nygaard
- Department of Microbiology, Haukeland University Hospital, Bergen, Norway
| | - Joachim Hegstad
- Department of Microbiology and Infection Control, University Hospital of North Norway, Tromsø, Norway
| | - Arnfinn Sundsfjord
- Research group for Host–Microbe Interactions, Department of Medical Biology, UiT The Arctic University of Norway, Tromsø, Norway
- Norwegian National Advisory Unit on Detection of Antimicrobial Resistance, Department of Microbiology and Infection Control, University Hospital of North Norway, Tromsø, Norway
| | - Kristin Hegstad
- Research group for Host–Microbe Interactions, Department of Medical Biology, UiT The Arctic University of Norway, Tromsø, Norway
- Norwegian National Advisory Unit on Detection of Antimicrobial Resistance, Department of Microbiology and Infection Control, University Hospital of North Norway, Tromsø, Norway
| | - the Norwegian VRE study group
- Research group for Host–Microbe Interactions, Department of Medical Biology, UiT The Arctic University of Norway, Tromsø, Norway
- Norwegian National Advisory Unit on Detection of Antimicrobial Resistance, Department of Microbiology and Infection Control, University Hospital of North Norway, Tromsø, Norway
- Department of Clinical Microbiology, Oslo University Hospital, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Antibiotic Resistance and Infection Prevention, Norwegian Institute of Public Health, Oslo, Norway
- Department of Microbiology, Haukeland University Hospital, Bergen, Norway
- Department of Microbiology and Infection Control, University Hospital of North Norway, Tromsø, Norway
- Present address: Section for development, Department of Microbiology, Clinic for Laboratory Medicine, Oslo University Hospital, Oslo, Norway
| |
Collapse
|
6
|
First Isolation of Vancomycin-Resistant Enterococcus faecium Carrying Plasmid-Borne vanD1. Antimicrob Agents Chemother 2022; 66:e0102922. [PMID: 36222537 PMCID: PMC9664843 DOI: 10.1128/aac.01029-22] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Vancomycin-resistant Enterococcus faecium carrying the vanD1 gene on plasmid pEF-D was isolated from a fecal sample of a hospitalized patient in Japan. The strain JH5687 showed moderate resistance to vancomycin (MIC, 16 μg/mL) but remained susceptible to teicoplanin (MIC, 1 μg/mL). The backbone gene organization of pEF-D was highly homologous to that of conjugative plasmid pMG1 or pHTβ. The calculated conjugation frequency of JH5687 was 10-4 to 10-5 per donor cell.
Collapse
|