1
|
Van Hooren B, Aagaard P, Blazevich AJ. Optimizing Resistance Training for Sprint and Endurance Athletes: Balancing Positive and Negative Adaptations. Sports Med 2024; 54:3019-3050. [PMID: 39373864 PMCID: PMC11608172 DOI: 10.1007/s40279-024-02110-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/19/2024] [Indexed: 10/08/2024]
Abstract
Resistance training (RT) triggers diverse morphological and physiological adaptations that are broadly considered beneficial for performance enhancement as well as injury risk reduction. Some athletes and coaches therefore engage in, or prescribe, substantial amounts of RT under the assumption that continued increments in maximal strength capacity and/or muscle mass will lead to improved sports performance. In contrast, others employ minimal or no RT under the assumption that RT may impair endurance or sprint performances. However, the morphological and physiological adaptations by which RT might impair physical performance, the likelihood of these being evoked, and the training program specifications that might promote such impairments, remain largely undefined. Here, we discuss how selected adaptations to RT may enhance or impair speed and endurance performances while also addressing the RT program variables under which these adaptations are likely to occur. Specifically, we argue that while some myofibrillar (muscle) hypertrophy can be beneficial for increasing maximum strength, substantial hypertrophy can lead to macro- and microscopic adaptations such as increases in body (or limb) mass and internal moment arms that might, under some conditions, impair both sprint and endurance performances. Further, we discuss how changes in muscle architecture, fiber typology, microscopic muscle structure, and intra- and intermuscular coordination with RT may maximize speed at the expense of endurance, or maximize strength at the expense of speed. The beneficial effect of RT for sprint and endurance sports can be further improved by considering the adaptive trade-offs and practical implications discussed in this review.
Collapse
Affiliation(s)
- Bas Van Hooren
- Department of Nutrition and Movement Sciences, NUTRIM Institute of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, Universiteitssingel 50, Maastricht, NL, 6229 ER, The Netherlands.
| | - Per Aagaard
- Department of Sports Science and Clinical Biomechanics, University of Southern Denmark, Odense, Denmark
| | - Anthony J Blazevich
- Centre for Human Performance, School of Medical and Health Sciences, Edith Cowan University, Joondalup, Australia
| |
Collapse
|
2
|
Deng L, Dai B, Zhang X, Xiao S, Fu W. Effects of gait retraining using minimalist shoes on the medial gastrocnemius muscle-tendon unit behavior and dynamics during running. Scand J Med Sci Sports 2024; 34:e14630. [PMID: 38644663 DOI: 10.1111/sms.14630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 03/20/2024] [Accepted: 04/04/2024] [Indexed: 04/23/2024]
Abstract
The effects of a 12-week gait retraining program on the adaptation of the medial gastrocnemius (MG) and muscle-tendon unit (MTU) were investigated. 26 runners with a rearfoot strike pattern (RFS) were randomly assigned to one of two groups: gait retraining (GR) or control group (CON). MG ultrasound images, marker positions, and ground reaction forces (GRF) were collected twice during 9 km/h of treadmill running before and after the intervention. Ankle kinetics and the MG and MTU behavior and dynamics were quantified. Runners in the GR performed gradual 12-week gait retraining transitioning to a forefoot strike pattern. After 12-week, (1) ten participants in each group completed the training; eight participants in GR transitioned to non-RFS with reduced foot strike angles; (2) MG fascicle contraction length and velocity significantly decreased after the intervention for both groups, whereas MG forces increased after intervention for both groups; (3) significant increases in MTU stretching length for GR and peak MTU recoiling velocity for both groups were observed after the intervention, respectively; (4) no significant difference was found for all parameters of the series elastic element. Gait retraining might potentially influence the MG to operate at lower fascicle contraction lengths and velocities and produce greater peak forces. The gait retraining had no effect on SEE behavior and dynamics but did impact MTU, suggesting that the training was insufficient to induce mechanical loading changes on SEE behavior and dynamics.
Collapse
Affiliation(s)
- Liqin Deng
- Key Laboratory of Exercise and Health Sciences of Ministry of Education, Shanghai University of Sport, Shanghai, China
| | - Boyi Dai
- Division of Kinesiology and Health, University of Wyoming, Laramie, Wyoming, USA
| | - Xini Zhang
- Faculty of Sports Science, Ningbo University, Ningbo, China
| | - Songlin Xiao
- Key Laboratory of Exercise and Health Sciences of Ministry of Education, Shanghai University of Sport, Shanghai, China
| | - Weijie Fu
- Key Laboratory of Exercise and Health Sciences of Ministry of Education, Shanghai University of Sport, Shanghai, China
| |
Collapse
|
3
|
Basas C, Ito N, Grävare Silbernagel K, Reyes-Gil F, Basas Á. The Basas Spanish Squat: Superimposition of Electrical Stimulation to Optimize Patellar Tendon Strain: A Case Series. Int J Sports Phys Ther 2023; 18:1299-1307. [PMID: 38050553 PMCID: PMC10693482 DOI: 10.26603/001c.89267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 09/24/2023] [Indexed: 12/06/2023] Open
Abstract
Background The Basas Spanish Squat with electrical stimulation (E-stim) has shown promising results as a potential key exercise in treatment of athletes with patellar tendinopathy. Gold standard exercise therapy for tendon injuries consists of tendon loading exercises, or exercises that appropriately applies high levels of mechanical strain to the tendon. The theoretical pathway in which the Basas Spanish Squat with E-stim improves tendinopathy has been speculated to be the additional strain applied through the patellar tendon during superimposition of E-stim. This theory, however, has yet to be confirmed. Purpose The purpose of this case series was to compare patellar tendon strain, during the Basas Spanish Squat with, and without E-stim, and open kinetic chain knee extension. Methods Four healthy participants performed the three exercises while a physical therapist collected simultaneous unilateral ultrasound images from the patellar tendon. Strain was calculated as the change in patellar tendon length during contraction divided by the resting length. Results Amongst all participants, patellar tendon strain was smallest during the Basas Spanish Squat without E-stim, followed by the open kinetic chain knee extension at 60% maximum voluntary isometric contraction. The Basas Spanish Squat with E-stim yielded approximately double or more strain compared to the without E-stim condition and demonstrated higher level of strain compared to open kinetic chain knee extension in all participants. Conclusion The findings reflect a clear trend of increased strain through the patellar tendon when E-stim was superimposed. The results support the theory that the Basas Spanish Squat with E-stim increases patellar tendon strain and could explain the reported clinical benefits in individuals with patellar tendinopathy. Level of Evidence 4, Case series.
Collapse
Affiliation(s)
- Carlos Basas
- Department of Physical Therapy Real Federacion Española de Atletismo
| | - Naoaki Ito
- Department of Physical Therapy University of Delaware
- Biomechanics and Movement Science Program University of Delaware
| | - Karin Grävare Silbernagel
- Department of Physical Therapy University of Delaware
- Biomechanics and Movement Science Program University of Delaware
| | | | - Ángel Basas
- Department of Physical Therapy Real Federacion Española de Atletismo
- Department of Physical Therapy University of Delaware
- Biomechanics and Movement Science Program University of Delaware
- Department of Physical Therapy and Sport Science Olympia Medical Center
| |
Collapse
|
4
|
Adam NC, Smith CR, Herzog W, Amis AA, Arampatzis A, Taylor WR. In Vivo Strain Patterns in the Achilles Tendon During Dynamic Activities: A Comprehensive Survey of the Literature. SPORTS MEDICINE - OPEN 2023; 9:60. [PMID: 37466866 DOI: 10.1186/s40798-023-00604-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 07/02/2023] [Indexed: 07/20/2023]
Abstract
Achilles' tendon (AT) injuries such as ruptures and tendinopathies have experienced a dramatic rise in the mid- to older-aged population. Given that the AT plays a key role at all stages of locomotion, unsuccessful rehabilitation after injury often leads to long-term, deleterious health consequences. Understanding healthy in vivo strains as well as the complex muscle-tendon unit interactions will improve access to the underlying aetiology of injuries and how their functionality can be effectively restored post-injury. The goals of this survey of the literature with a systematic search were to provide a benchmark of healthy AT strains measured in vivo during functional activities and identify the sources of variability observed in the results. Two databases were searched, and all articles that provided measured in vivo peak strains or the change in strain with respect to time were included. In total, 107 articles that reported subjects over the age of 18 years with no prior AT injury and measured while performing functional activities such as voluntary contractions, walking, running, jumping, or jump landing were included in this review. In general, unclear anatomical definitions of the sub-tendon and aponeurosis structures have led to considerable confusion in the literature. MRI, ultrasound, and motion capture were the predominant approaches, sometimes coupled with modelling. The measured peak strains increased from 4% to over 10% from contractions, to walking, running, and jumping, in that order. Importantly, measured AT strains were heavily dependent on measurement location, measurement method, measurement protocol, individual AT geometry, and mechanical properties, as well as instantaneous kinematics and kinetics of the studied activity. Through a comprehensive review of approaches and results, this survey of the literature therefore converges to a united terminology of the structures and their common underlying characteristics and presents the state-of-knowledge on their functional strain patterns.
Collapse
Affiliation(s)
- Naomi C Adam
- Institute for Biomechanics, ETH Zürich, Leopold-Ruzicka-Weg 4, 8093, Zurich, Switzerland
| | - Colin R Smith
- Institute for Biomechanics, ETH Zürich, Leopold-Ruzicka-Weg 4, 8093, Zurich, Switzerland
| | - Walter Herzog
- Human Performance Laboratory, Faculty of Kinesiology, The University of Calgary, Calgary, Canada
| | - Andrew A Amis
- Department of Mechanical Engineering, Imperial College London, London, UK
| | - Adamantios Arampatzis
- Department of Training and Movement Sciences, Humboldt-Universität zu Berlin, and Berlin School of Movement Science, Berlin, Germany
| | - William R Taylor
- Institute for Biomechanics, ETH Zürich, Leopold-Ruzicka-Weg 4, 8093, Zurich, Switzerland.
| |
Collapse
|
5
|
Lazarczuk SL, Maniar N, Opar DA, Duhig SJ, Shield A, Barrett RS, Bourne MN. Mechanical, Material and Morphological Adaptations of Healthy Lower Limb Tendons to Mechanical Loading: A Systematic Review and Meta-Analysis. Sports Med 2022; 52:2405-2429. [PMID: 35657492 PMCID: PMC9474511 DOI: 10.1007/s40279-022-01695-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/20/2022] [Indexed: 11/22/2022]
Abstract
BACKGROUND Exposure to increased mechanical loading during physical training can lead to increased tendon stiffness. However, the loading regimen that maximises tendon adaptation and the extent to which adaptation is driven by changes in tendon material properties or tendon geometry is not fully understood. OBJECTIVE To determine (1) the effect of mechanical loading on tendon stiffness, modulus and cross-sectional area (CSA); (2) whether adaptations in stiffness are driven primarily by changes in CSA or modulus; (3) the effect of training type and associated loading parameters (relative intensity; localised strain, load duration, load volume and contraction mode) on stiffness, modulus or CSA; and (4) whether the magnitude of adaptation in tendon properties differs between age groups. METHODS Five databases (PubMed, Scopus, CINAHL, SPORTDiscus, EMBASE) were searched for studies detailing load-induced adaptations in tendon morphological, material or mechanical properties. Standardised mean differences (SMDs) with 95% confidence intervals (CIs) were calculated and data were pooled using a random effects model to estimate variance. Meta regression was used to examine the moderating effects of changes in tendon CSA and modulus on tendon stiffness. RESULTS Sixty-one articles met the inclusion criteria. The total number of participants in the included studies was 763. The Achilles tendon (33 studies) and the patella tendon (24 studies) were the most commonly studied regions. Resistance training was the main type of intervention (49 studies). Mechanical loading produced moderate increases in stiffness (standardised mean difference (SMD) 0.74; 95% confidence interval (CI) 0.62-0.86), large increases in modulus (SMD 0.82; 95% CI 0.58-1.07), and small increases in CSA (SMD 0.22; 95% CI 0.12-0.33). Meta-regression revealed that the main moderator of increased stiffness was modulus. Resistance training interventions induced greater increases in modulus than other training types (SMD 0.90; 95% CI 0.65-1.15) and higher strain resistance training protocols induced greater increases in modulus (SMD 0.82; 95% CI 0.44-1.20; p = 0.009) and stiffness (SMD 1.04; 95% CI 0.65-1.43; p = 0.007) than low-strain protocols. The magnitude of stiffness and modulus differences were greater in adult participants. CONCLUSIONS Mechanical loading leads to positive adaptation in lower limb tendon stiffness, modulus and CSA. Studies to date indicate that the main mechanism of increased tendon stiffness due to physical training is increased tendon modulus, and that resistance training performed at high compared to low localised tendon strains is associated with the greatest positive tendon adaptation. PROSPERO registration no.: CRD42019141299.
Collapse
Affiliation(s)
- Stephanie L Lazarczuk
- School of Health Sciences and Social Work, Griffith University, Gold Coast, QLD, Australia.
- Griffith Centre of Biomedical and Rehabilitation Engineering (GCORE), Menzies Health Institute Queensland, Griffith University, Gold Coast, QLD, Australia.
| | - Nirav Maniar
- School of Behavioural and Health Sciences, Australian Catholic University, Melbourne, VIC, Australia
- Sports Performance, Recovery, Injury and New Technologies (SPRINT) Research Centre, Australian Catholic University, Melbourne, VIC, Australia
| | - David A Opar
- School of Behavioural and Health Sciences, Australian Catholic University, Melbourne, VIC, Australia
- Sports Performance, Recovery, Injury and New Technologies (SPRINT) Research Centre, Australian Catholic University, Melbourne, VIC, Australia
| | - Steven J Duhig
- School of Health Sciences and Social Work, Griffith University, Gold Coast, QLD, Australia
- Griffith Centre of Biomedical and Rehabilitation Engineering (GCORE), Menzies Health Institute Queensland, Griffith University, Gold Coast, QLD, Australia
| | - Anthony Shield
- School of Exercise and Nutrition Sciences and Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, QLD, Australia
| | - Rod S Barrett
- School of Health Sciences and Social Work, Griffith University, Gold Coast, QLD, Australia
- Griffith Centre of Biomedical and Rehabilitation Engineering (GCORE), Menzies Health Institute Queensland, Griffith University, Gold Coast, QLD, Australia
| | - Matthew N Bourne
- School of Health Sciences and Social Work, Griffith University, Gold Coast, QLD, Australia
- Griffith Centre of Biomedical and Rehabilitation Engineering (GCORE), Menzies Health Institute Queensland, Griffith University, Gold Coast, QLD, Australia
| |
Collapse
|
6
|
Tecchio P, Zamparo P, Nardello F, Monte A. Achilles tendon mechanical properties during walking and running are underestimated when its curvature is not accounted for. J Biomech 2022; 137:111095. [PMID: 35472710 DOI: 10.1016/j.jbiomech.2022.111095] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Revised: 03/07/2022] [Accepted: 04/08/2022] [Indexed: 11/25/2022]
Abstract
Achilles tendon (AT) mechanical properties can be estimated using an inverse dynamic approach, taking into account the tendon internal moment arm (IMA) and its kinematic behavior. Although AT presents a curvilinear line of action, a straight-line function to estimate IMA and AT length is often utilized in the literature. In this study, we combined kinetic, kinematic and ultrasound data to understand the impact of two different approaches (straight-line vs. curvilinear) in determining AT mechanical properties in vivo (during walking and running at the self-selected speed). AT force and power were calculated based on data of AT IMA and AT length derived by both respective methods. All investigated parameters were significantly affected by the method utilized (paired t-test; p < 0.05): when using the curvilinear method IMA was about 5% lower and AT length about 1.2% higher, whereas peak and mean values of AT force and power were 5% higher when compared to the straight-line method (both in walking and running). Statistic-parametric mapping (SMP) analysis revealed significant differences in IMA during the early and the late stance phase of walking and during the late stance phase of running (p < 0.01); SPM revealed significant differences also in AT length during the entire stance phase in both locomotion modes (p < 0.01). These results confirm and extend previous findings to human locomotion: neglecting the AT curvature might be a source of error, resulting in underestimates not only of internal moment arm and tendon length, but also of tendon force and power.
Collapse
Affiliation(s)
- Paolo Tecchio
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Italy; Human Movement Science, Faculty of Sports Science, Ruhr University Bochum, Bochum, Germany.
| | - Paola Zamparo
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Italy.
| | - Francesca Nardello
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Italy.
| | - Andrea Monte
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Italy.
| |
Collapse
|
7
|
Waugh CM, Scott A. Case Studies in Physiology: Adaptation of Loading-Bearing Tendons during Pregnancy. J Appl Physiol (1985) 2022; 132:1280-1289. [PMID: 35271408 DOI: 10.1152/japplphysiol.00555.2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Pregnancy is characterized by hormone changes that could alter musculoskeletal (MSK) properties and temporarily increase soft tissue injury risk. Whilst the prevalence of MSK injuries in pregnancy has not yet proven itself to be a widespread problem, indirect evidence indicates an uptake in the prevalence of strength training and vigorous-intensity activity during pregnancy, which may result in increased MSK injury incidence. Combining this evidence with the association between sex hormones and MSK injury risk, we recognize the potential importance of this research area and believe the (prospective) examination of connective tissue properties in relation to hormonal changes in pregnancy are appropriate. Given the dearth of information on MSK adaptations to pregnancy, we present a variety of morphological, mechanical and functional tendon data from two consecutive pregnancies in one woman as a means of highlighting this under-researched topic. This data may be representative of the general pregnant population, or it may be highly individualized - more research is required for a better understanding of MSK adaptation and injury risk during and after pregnancy.
Collapse
Affiliation(s)
- Charlie M Waugh
- Department of Physical Therapy, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Alexander Scott
- Department of Physical Therapy, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|