1
|
Ji M, Ma G, Liu C, Gu B, Du X, Ou X, Xu X, Song S, Yang Z. Head-to-head comparison of [ 68Ga]Ga-DOTA-FAPI-04 and [ 18F]FDG PET/CT for the evaluation of tonsil cancer and lymph node metastases: a single-centre retrospective study. Cancer Imaging 2024; 24:56. [PMID: 38702821 PMCID: PMC11069139 DOI: 10.1186/s40644-024-00699-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 04/25/2024] [Indexed: 05/06/2024] Open
Abstract
BACKGROUND This study aimed to compare the diagnostic value of [68 Ga]Ga-DOTA-FAPI-04 and [18F]FDG PET/CT imaging for primary lesions and metastatic lymph nodes in patients with tonsil cancer. METHOD Twenty-one tonsil cancer patients who underwent [68 Ga]Ga-DOTA-FAPI-04 and [18F]FDG PET/CT scans within two weeks in our centre were retrospectively enrolled. The maximum standardized uptake value (SUVmax) and tumor-to-background ratio (TBR) of the two tracers were compared by using the Mann‒Whitney U test. In addition, the sensitivity, specificity, and accuracy of the two methods for diagnosing metastatic lymph nodes were analysed. RESULTS In detecting primary lesions, the efficiency was higher for [68 Ga]Ga-DOTA-FAPI-04 PET/CT (20/22) than for [18F]FDG PET/CT (9/22). Although [68 Ga]Ga-DOTA-FAPI-04 uptake (SUVmax, 5.03 ± 4.06) was lower than [18F]FDG uptake (SUVmax, 7.90 ± 4.84, P = 0.006), [68 Ga]Ga-DOTA-FAPI-04 improved the distinction between the primary tumor and contralateral normal tonsillar tissue. The TBR was significantly higher for [68 Ga]Ga-DOTA-FAPI-04 PET/CT (3.19 ± 2.06) than for [18F]FDG PET/CT (1.89 ± 1.80) (p < 0.001). In lymph node analysis, SUVmax and TBR were not significantly different between [68 Ga]Ga-DOTA-FAPI-04 and [18F]FDG PET/CT (7.67 ± 5.88 vs. 8.36 ± 6.15, P = 0.498 and 5.56 ± 4.02 vs. 4.26 ± 3.16, P = 0.123, respectively). The specificity and accuracy of [68 Ga]Ga-DOTA-FAPI-04 PET/CT were higher than those of [18F]FDG PET/CT in diagnosing metastatic cervical lymph nodes (all P < 0.05). CONCLUSION The availability of [68 Ga]Ga-DOTA-FAPI-04 complements the diagnostic results of [18F]FDG by improving the detection rate of primary lesions and the diagnostic accuracy of cervical metastatic lymph nodes in tonsil cancer compared to [18F]FDG.
Collapse
Affiliation(s)
- Mengjing Ji
- Department of Nuclear Medicine, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Center for Biomedical Imaging, Fudan University, Shanghai, 200032, China
- Shanghai Engineering Research Center of Molecular Imaging Probes, Shanghai, 200032, China
| | - Guang Ma
- Department of Nuclear Medicine, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Center for Biomedical Imaging, Fudan University, Shanghai, 200032, China
- Shanghai Engineering Research Center of Molecular Imaging Probes, Shanghai, 200032, China
| | - Cheng Liu
- Department of Nuclear Medicine, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Center for Biomedical Imaging, Fudan University, Shanghai, 200032, China
- Shanghai Engineering Research Center of Molecular Imaging Probes, Shanghai, 200032, China
| | - Bingxin Gu
- Department of Nuclear Medicine, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Center for Biomedical Imaging, Fudan University, Shanghai, 200032, China
- Shanghai Engineering Research Center of Molecular Imaging Probes, Shanghai, 200032, China
| | - Xinyue Du
- Department of Nuclear Medicine, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Center for Biomedical Imaging, Fudan University, Shanghai, 200032, China
- Shanghai Engineering Research Center of Molecular Imaging Probes, Shanghai, 200032, China
| | - Xiaomin Ou
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
| | - Xiaoping Xu
- Department of Nuclear Medicine, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Center for Biomedical Imaging, Fudan University, Shanghai, 200032, China
- Shanghai Engineering Research Center of Molecular Imaging Probes, Shanghai, 200032, China
| | - Shaoli Song
- Department of Nuclear Medicine, Fudan University Shanghai Cancer Center, Shanghai, 200032, China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
- Center for Biomedical Imaging, Fudan University, Shanghai, 200032, China.
- Shanghai Engineering Research Center of Molecular Imaging Probes, Shanghai, 200032, China.
| | - Zhongyi Yang
- Department of Nuclear Medicine, Fudan University Shanghai Cancer Center, Shanghai, 200032, China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
- Center for Biomedical Imaging, Fudan University, Shanghai, 200032, China.
- Shanghai Engineering Research Center of Molecular Imaging Probes, Shanghai, 200032, China.
| |
Collapse
|
2
|
Bicci E, Calamandrei L, Mungai F, Granata V, Fusco R, De Muzio F, Bonasera L, Miele V. Imaging of human papilloma virus (HPV) related oropharynx tumour: what we know to date. Infect Agent Cancer 2023; 18:58. [PMID: 37814320 PMCID: PMC10563217 DOI: 10.1186/s13027-023-00530-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 09/11/2023] [Indexed: 10/11/2023] Open
Abstract
The tumours of head and neck district are around 3% of all malignancies and squamous cell carcinoma is the most frequent histotype, with rapid increase during the last two decades because of the increment of the infection due to human papilloma virus (HPV). Even if the gold standard for the diagnosis is histological examination, including the detection of viral DNA and transcription products, imaging plays a fundamental role in the detection and staging of HPV + tumours, in order to assess the primary tumour, to establish the extent of disease and for follow-up. The main diagnostic tools are Computed Tomography (CT), Positron Emission Tomography-Computed Tomography (PET-CT) and Magnetic Resonance Imaging (MRI), but also Ultrasound (US) and the use of innovative techniques such as Radiomics have an important role. Aim of our review is to illustrate the main imaging features of HPV + tumours of the oropharynx, in US, CT and MRI imaging. In particular, we will outline the main limitations and strengths of the various imaging techniques, the main uses in the diagnosis, staging and follow-up of disease and the fundamental differential diagnoses of this type of tumour. Finally, we will focus on the innovative technique of texture analysis, which is increasingly gaining importance as a diagnostic tool in aid of the radiologist.
Collapse
Affiliation(s)
- Eleonora Bicci
- Department of Radiology, University of Florence - Azienda Ospedaliero-Universitaria Careggi, Florence, 50134, Italy.
| | - Leonardo Calamandrei
- Department of Experimental and Clinical Biomedical Sciences, Radiodiagnostic Unit n. 2, University of Florence - Azienda Ospedaliero-Universitaria Careggi, Florence, 50134, Italy
| | - Francesco Mungai
- Department of Radiology, University of Florence - Azienda Ospedaliero-Universitaria Careggi, Florence, 50134, Italy
| | - Vincenza Granata
- Division of Radiology, Istituto Nazionale Tumori IRCCS Fondazione Pascale-IRCCS di Napoli, Naples, 80131, Italy
| | - Roberta Fusco
- Medical Oncology Division, Igea SpA, Naples, 80013, Italy
- Italian Society of Medical and Interventional Radiology (SIRM), SIRM Foundation, Milan, 20122, Italy
| | - Federica De Muzio
- Department of Medicine and Health Sciences V. Tiberio, University of Molise, Campobasso, 86100, Italy
| | - Luigi Bonasera
- Department of Radiology, University of Florence - Azienda Ospedaliero-Universitaria Careggi, Florence, 50134, Italy
| | - Vittorio Miele
- Department of Radiology, University of Florence - Azienda Ospedaliero-Universitaria Careggi, Florence, 50134, Italy
| |
Collapse
|
3
|
Role of Texture Analysis in Oropharyngeal Carcinoma: A Systematic Review of the Literature. Cancers (Basel) 2022; 14:cancers14102445. [PMID: 35626048 PMCID: PMC9139172 DOI: 10.3390/cancers14102445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 05/02/2022] [Accepted: 05/10/2022] [Indexed: 11/16/2022] Open
Abstract
Simple Summary The incidence of squamous cell carcinomas of the oropharynx has rapidly increased in the last two decades due to human papilloma virus infection (HPV). HPV-positive and HPV-negative squamous cell tumours differ in radiological imaging, treatment, and prognosis; therefore, differential diagnosis is mandatory. Radiomics with texture analysis is an innovative technique that has been used increasingly in recent years to characterise the tissue heterogeneity of certain structures such as neoplasms or organs by measuring the spatial distribution of pixel values on radiological imaging. This review delineates the application of texture analysis in oropharyngeal tumours and explores how radiomics may potentially improve clinical decision-making. Abstract Human papilloma virus infection (HPV) is associated with the development of lingual and palatine tonsil carcinomas. Diagnosing, differentiating HPV-positive from HPV-negative cancers, and assessing the presence of lymph node metastases or recurrences by the visual interpretation of images is not easy. Texture analysis can provide structural information not perceptible to human eyes. A systematic literature search was performed on 16 February 2022 for studies with a focus on texture analysis in oropharyngeal cancers. We conducted the research on PubMed, Scopus, and Web of Science platforms. Studies were screened for inclusion according to the preferred reporting items for systematic reviews. Twenty-six studies were included in our review. Nineteen articles related specifically to the oropharynx and seven articles analysed the head and neck area with sections dedicated to the oropharynx. Six, thirteen, and seven articles used MRI, CT, and PET, respectively, as the imaging techniques by which texture analysis was performed. Regarding oropharyngeal tumours, this review delineates the applications of texture analysis in (1) the diagnosis, prognosis, and assessment of disease recurrence or persistence after therapy, (2) early differentiation of HPV-positive versus HPV-negative cancers, (3) the detection of cancers not visualised by imaging alone, and (4) the assessment of lymph node metastases from unknown primary carcinomas.
Collapse
|