1
|
Pružinská K, Chrastina M, Khademnematolahi S, Vyletelová V, Gajdošová L, Pastvová L, Dráfi F, Poništ S, Pašková Ľ, Kucharská J, Sumbalová Z, Muchová J, Martiniaková S, Bauerová K. Astaxanthin, Compared to Other Carotenoids, Increases the Efficacy of Methotrexate in Rat Adjuvant Arthritis. Int J Mol Sci 2024; 25:8710. [PMID: 39201397 PMCID: PMC11354740 DOI: 10.3390/ijms25168710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 07/31/2024] [Accepted: 08/02/2024] [Indexed: 09/02/2024] Open
Abstract
This in vivo study performed in rat adjuvant arthritis aims to advance the understanding of astaxanthin's therapeutic properties for the possible treatment of rheumatoid arthritis (RA) in monotherapy and along with the standard RA treatment, methotrexate (MTX), in combination therapy. The main goal was to elucidate astaxanthin's full therapeutic potential, evaluate its dose dependency, and compare its effects in monotherapy with other carotenoids such as β-carotene and β-cryptoxanthin (KXAN). Moreover, potential differences in therapeutic activity caused by using different sources of astaxanthin, synthetic (ASYN) versus isolated from Blakeslea trispora (ASTAP), were evaluated using one-way ANOVA (Tukey-Kramer post hoc test). KXAN was the most effective in reducing plasma MMP-9 levels in monotherapy, significantly better than MTX, and in reducing hind paw swelling. The differences in the action of ASTAP and ASYN have been observed across various biometric, anti-inflammatory, and antioxidative parameters. In combined therapy with MTX, the ASYN + MTX combination proved to be better. These findings, especially the significant anti-arthritic effect of KXAN and ASYN + MTX, could be the basis for further preclinical studies.
Collapse
Affiliation(s)
- Katarína Pružinská
- Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Malá Hora 10701/4A, 036 01 Martin, Slovakia;
- Institute of Experimental Pharmacology and Toxicology, Centre of Experimental Medicine SAS, 841 04 Bratislava, Slovakia; (M.C.); (S.K.); (F.D.); (S.P.)
| | - Martin Chrastina
- Institute of Experimental Pharmacology and Toxicology, Centre of Experimental Medicine SAS, 841 04 Bratislava, Slovakia; (M.C.); (S.K.); (F.D.); (S.P.)
| | - Sasan Khademnematolahi
- Institute of Experimental Pharmacology and Toxicology, Centre of Experimental Medicine SAS, 841 04 Bratislava, Slovakia; (M.C.); (S.K.); (F.D.); (S.P.)
- Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovičova 6, 842 15 Bratislava, Slovakia
| | - Veronika Vyletelová
- Faculty of Pharmacy, Comenius University in Bratislava, Odbojárov 10, 832 32 Bratislava, Slovakia; (V.V.); (Ľ.P.)
| | - Lívia Gajdošová
- Institute of Medical Chemistry, Biochemistry and Clinical Biochemistry, Faculty of Medicine, Comenius University, Sasinkova 2, 813 72 Bratislava, Slovakia; (L.G.); (L.P.); (Z.S.); (J.M.)
| | - Lucia Pastvová
- Institute of Medical Chemistry, Biochemistry and Clinical Biochemistry, Faculty of Medicine, Comenius University, Sasinkova 2, 813 72 Bratislava, Slovakia; (L.G.); (L.P.); (Z.S.); (J.M.)
| | - František Dráfi
- Institute of Experimental Pharmacology and Toxicology, Centre of Experimental Medicine SAS, 841 04 Bratislava, Slovakia; (M.C.); (S.K.); (F.D.); (S.P.)
| | - Silvester Poništ
- Institute of Experimental Pharmacology and Toxicology, Centre of Experimental Medicine SAS, 841 04 Bratislava, Slovakia; (M.C.); (S.K.); (F.D.); (S.P.)
| | - Ľudmila Pašková
- Faculty of Pharmacy, Comenius University in Bratislava, Odbojárov 10, 832 32 Bratislava, Slovakia; (V.V.); (Ľ.P.)
| | - Jarmila Kucharská
- Pharmacobiochemical Laboratory of Third Department of Internal Medicine, Faculty of Medicine, Comenius University in Bratislava, Špitálska 24, 813 72 Bratislava, Slovakia;
| | - Zuzana Sumbalová
- Institute of Medical Chemistry, Biochemistry and Clinical Biochemistry, Faculty of Medicine, Comenius University, Sasinkova 2, 813 72 Bratislava, Slovakia; (L.G.); (L.P.); (Z.S.); (J.M.)
| | - Jana Muchová
- Institute of Medical Chemistry, Biochemistry and Clinical Biochemistry, Faculty of Medicine, Comenius University, Sasinkova 2, 813 72 Bratislava, Slovakia; (L.G.); (L.P.); (Z.S.); (J.M.)
| | - Silvia Martiniaková
- Department of Food Technology, Institute of Food Science and Nutrition, Faculty of Chemical and Food Technology, Slovak University of Technology in Bratislava, Radlinského 9, 812 37 Bratislava, Slovakia;
| | - Katarína Bauerová
- Institute of Experimental Pharmacology and Toxicology, Centre of Experimental Medicine SAS, 841 04 Bratislava, Slovakia; (M.C.); (S.K.); (F.D.); (S.P.)
| |
Collapse
|
2
|
Shen W, Chen H, Shih C, Samet J, Tong H. Modulatory effects of dietary saturated fatty acids on platelet mitochondrial function following short-term exposure to ambient Particulate Matter (PM 2.5). JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2024; 87:215-226. [PMID: 38111233 PMCID: PMC12038770 DOI: 10.1080/15287394.2023.2292709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2023]
Abstract
Exposure to ambient fine particulate matter (PM2.5) was found to produce vascular injury, possibly by activating platelets within days after exposure. The aim of this study was to investigate the modulatory effects of dietary saturated fatty acids on platelet mitochondrial respiratory parameters following short-term inhalational exposure to PM2.5. A total of 22 healthy male volunteers were recruited from the Research Triangle area of North Carolina. Platelets were isolated from fresh whole blood samples and mitochondrial respiratory parameters were measured using an extracellular flux analyzer. Intake of saturated fat was averaged from multiple 24-hr dietary recalls. Daily ambient PM2.5 concentrations were obtained from ambient air quality monitoring stations. Correlation and ANOVA were used in data analyses, along with the pick-a-point method and the Johnson-Neyman technique for probing moderation. After controlling for age and omega-3 index, the intake of dietary saturated fatty acids after reaching 9.3% or higher of the total caloric intake significantly moderated the associations between PM2.5 exposure and several platelet mitochondrial respiratory parameters. In conclusion, dietary saturated fatty acids above 9.3% of total caloric intake influenced the relationship between short-term PM2.5 exposure and platelet mitochondrial respiration. Further research is needed to understand these associations and their implications for cardiovascular health.
Collapse
Affiliation(s)
- Wan Shen
- Oak Ridge Institute for Science and Education, 100 ORAU Way, Oak Ridge, TN 37830, USA
- Food and Nutrition Program, Department of Public and Allied Health, Bowling Green State University, Bowling Green, Ohio 43403
| | - Hao Chen
- Oak Ridge Institute for Science and Education, 100 ORAU Way, Oak Ridge, TN 37830, USA
| | - Chiahao Shih
- Department of Emergency Medicine, University of Toledo, Toledo, OH 43606, USA
| | - James Samet
- Public Health and Integrated Toxicology Division, Center for Public Health and Environmental Assessment, 104 Mason Farm Road, Chapel Hill, NC 27514, USA
| | - Haiyan Tong
- Public Health and Integrated Toxicology Division, Center for Public Health and Environmental Assessment, 104 Mason Farm Road, Chapel Hill, NC 27514, USA
| |
Collapse
|
3
|
Diaz EC, Adams SH, Weber JL, Cotter M, Børsheim E. Elevated LDL-C, high blood pressure, and low peak V ˙ O 2 associate with platelet mitochondria function in children-The Arkansas Active Kids Study. Front Mol Biosci 2023; 10:1136975. [PMID: 37033448 PMCID: PMC10073692 DOI: 10.3389/fmolb.2023.1136975] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 03/07/2023] [Indexed: 04/11/2023] Open
Abstract
Purpose: To evaluate the association of platelet (PL) mitochondria respiration with markers of cardiovascular health in children ages 7-10 years. Methods: PL mitochondrial respiration (n = 91) was assessed by high resolution respirometry (HRR): Routine (R) respiration, complex (C) I linked respiration (CI), and maximal uncoupled electron transport capacity of CII (CIIE) were measured. The respiratory control ratio (RCR) was calculated as the ratio of maximal oxidative phosphorylation capacity of CI and CI leak respiration (PCI/LCI). Peak V ˙ O2 (incremental bike test) and body composition (dual-energy X-ray absorptiometry) were measured. Multiple generalized linear regression analysis was used to model the association of measures by HRR with variables of interest: adiposity, low-density lipoprotein (LDL-C) and triglyceride (TG) status (normal vs. elevated) HOMA2-IR, blood pressure status (normal vs. high), and demographics. Results: R and CI-linked respiration positively associated with adiposity, high blood pressure (HBP), and peak V ˙ O2. R and CI-linked respiration had inverse association with age and elevated LDL-C. CIIE was higher in children with elevated LDL-C (log-β = -0.54, p = 0.010). HBP and peak V ˙ O2 interacted in relation to RCR (log-β = -0.01, p = 0.028). Specifically, RCR was lowest among children with HBP and low aerobic capacity (i.e., mean peak V ˙ O2 -1SD). HOMA2-IR did not associate with measures of PL mitochondria respiration. Conclusion: In PL, R and CI-linked mitochondrial respiration directly associate with adiposity, peak V ˙ O2 and HBP. Elevated LDL-C associates with lower CI-linked respiration which is compensated by increasing CII respiration. PL bioenergetics phenotypes in children associate with whole-body metabolic health status.
Collapse
Affiliation(s)
- Eva C. Diaz
- Arkansas Children’s Nutrition Center, Little Rock, AR, United States
- Arkansas Children’s Research Institute, Little Rock, AR, United States
- Department of Pediatrics, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, United States
- *Correspondence: Eva C. Diaz,
| | - Sean H. Adams
- Department of Surgery, and Center for Alimentary and Metabolic Science, University of California, Davis, School of Medicine, Sacramento, CA, United States
| | - Judith L. Weber
- Arkansas Children’s Research Institute, Little Rock, AR, United States
- Department of Nursing Science, College of Nursing, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Matthew Cotter
- Arkansas Children’s Nutrition Center, Little Rock, AR, United States
| | - Elisabet Børsheim
- Arkansas Children’s Nutrition Center, Little Rock, AR, United States
- Arkansas Children’s Research Institute, Little Rock, AR, United States
- Department of Pediatrics, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| |
Collapse
|
4
|
Sills ES. Why might ovarian rejuvenation fail? Decision analysis of variables impacting reproductive response after autologous platelet-rich plasma. Minerva Obstet Gynecol 2022; 74:377-385. [PMID: 35107239 DOI: 10.23736/s2724-606x.22.04996-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Experience with platelet-rich plasma (PRP) has accumulated from use in dental restoration, post-infarct myocardial repair, tendon surgery, pain management, and aesthetic enhancements. Reproductive medicine joined this arena in 2016, beginning with reports of menopause reversal and fertility recovery after autologous PRP for senescent ovaries. Although recent publications have highlighted benefits of 'ovarian rejuvenation', the absence of randomized placebo-controlled clinical trial data has limited its acceptance. Because selection bias tends to underreport negative outcomes, reliable estimates cannot be calculated for how often intraovarian PRP is unsuccessful. Ample information is available, however, to permit an operational root-cause analysis when failures are considered. This assessment uses a PRP treatment care path with a decision theory model to critique pre-intake screening, baseline audit, sample processing, ovarian tissue placement method, equipment selection, and follow-up monitoring. These branched choice points enable interventions likely to determine outcome. Specimen handling for intraovarian PRP merits particular scrutiny, since enormous variation in platelet protocols already exists across unrelated clinical areas. As a new addition to fertility practice, intraovarian PRP requires validation of safety and efficacy to gain wider support. Borrowing PRP knowledge from other domains can facilitate this goal, ideally with appreciation of aspects unique to intraovarian use.
Collapse
Affiliation(s)
- E Scott Sills
- Plasma Research Section, FertiGen CAG/Regenerative Biology Group, San Clemente, CA, USA - .,Department of Obstetrics & Gynecology, Palomar Medical Center, Escondido, CA, USA -
| |
Collapse
|
5
|
Palacka P, Gvozdjáková A, Rausová Z, Kucharská J, Slopovský J, Obertová J, Furka D, Furka S, Singh KK, Sumbalová Z. Platelet Mitochondrial Bioenergetics Reprogramming in Patients with Urothelial Carcinoma. Int J Mol Sci 2021; 23:388. [PMID: 35008814 PMCID: PMC8745267 DOI: 10.3390/ijms23010388] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 12/23/2021] [Accepted: 12/27/2021] [Indexed: 12/14/2022] Open
Abstract
Mitochondrial bioenergetics reprogramming is an essential response of cells to stress. Platelets, an accessible source of mitochondria, have a crucial role in cancer development; however, the platelet mitochondrial function has not been studied in urothelial carcinoma (UC) patients. A total of 15 patients with UC and 15 healthy controls were included in the study. Parameters of platelet mitochondrial respiration were evaluated using the high-resolution respirometry method, and the selected antioxidant levels were determined by HPLC. In addition, oxidative stress was evaluated by the thiobarbituric acid reactive substances (TBARS) concentration in plasma. We demonstrated deficient platelet mitochondrial respiratory chain functions, oxidative phosphorylation (OXPHOS), and electron transfer (ET) capacity with complex I (CI)-linked substrates, and reduced the endogenous platelet coenzyme Q10 (CoQ10) concentration in UC patients. The activity of citrate synthase was decreased in UC patients vs. controls (p = 0.0191). γ-tocopherol, α-tocopherol in platelets, and β-carotene in plasma were significantly lower in UC patients (p = 0.0019; p = 0.02; p = 0.0387, respectively), whereas the plasma concentration of TBARS was increased (p = 0.0022) vs. controls. The changes in platelet mitochondrial bioenergetics are consistent with cell metabolism reprogramming in UC patients. We suppose that increased oxidative stress, decreased OXPHOS, and a reduced platelet endogenous CoQ10 level can contribute to the reprogramming of platelet mitochondrial OXPHOS toward the activation of glycolysis. The impaired mitochondrial function can contribute to increased oxidative stress by triggering the reverse electron transport from the CoQ10 cycle (Q-junction) to CI.
Collapse
Affiliation(s)
- Patrik Palacka
- 2nd Department of Oncology, Faculty of Medicine, Comenius University in Bratislava, Klenova 1, 833 10 Bratislava, Slovakia; (J.S.); (J.O.)
- National Cancer Institute, 833 10 Bratislava, Slovakia
| | - Anna Gvozdjáková
- Pharmacobiochemical Laboratory of the 3rd Department of Internal Medicine, Faculty of Medicine, Comenius University in Bratislava, 813 72 Bratislava, Slovakia; (A.G.); (Z.R.); (J.K.); (Z.S.)
| | - Zuzana Rausová
- Pharmacobiochemical Laboratory of the 3rd Department of Internal Medicine, Faculty of Medicine, Comenius University in Bratislava, 813 72 Bratislava, Slovakia; (A.G.); (Z.R.); (J.K.); (Z.S.)
| | - Jarmila Kucharská
- Pharmacobiochemical Laboratory of the 3rd Department of Internal Medicine, Faculty of Medicine, Comenius University in Bratislava, 813 72 Bratislava, Slovakia; (A.G.); (Z.R.); (J.K.); (Z.S.)
| | - Ján Slopovský
- 2nd Department of Oncology, Faculty of Medicine, Comenius University in Bratislava, Klenova 1, 833 10 Bratislava, Slovakia; (J.S.); (J.O.)
- National Cancer Institute, 833 10 Bratislava, Slovakia
| | - Jana Obertová
- 2nd Department of Oncology, Faculty of Medicine, Comenius University in Bratislava, Klenova 1, 833 10 Bratislava, Slovakia; (J.S.); (J.O.)
- National Cancer Institute, 833 10 Bratislava, Slovakia
| | - Daniel Furka
- Department of Physical and Theoretical Chemistry, Faculty of Natural Sciences, Comenius University in Bratislava, 841 04 Bratislava, Slovakia; (D.F.); (S.F.)
| | - Samuel Furka
- Department of Physical and Theoretical Chemistry, Faculty of Natural Sciences, Comenius University in Bratislava, 841 04 Bratislava, Slovakia; (D.F.); (S.F.)
| | - Keshav K. Singh
- Department of Genetics, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA;
| | - Zuzana Sumbalová
- Pharmacobiochemical Laboratory of the 3rd Department of Internal Medicine, Faculty of Medicine, Comenius University in Bratislava, 813 72 Bratislava, Slovakia; (A.G.); (Z.R.); (J.K.); (Z.S.)
| |
Collapse
|