1
|
Edlund M, Anderson BM, Su HJ, Robison T, Caraballo-Ortiz MA, Der JP, Nickrent DL, Petersen G. Plastome evolution in Santalales involves relaxed selection prior to loss of ndh genes and major boundary shifts of the inverted repeat. ANNALS OF BOTANY 2025; 135:515-530. [PMID: 39213003 PMCID: PMC11897430 DOI: 10.1093/aob/mcae145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 09/03/2024] [Indexed: 09/04/2024]
Abstract
BACKGROUND AND AIMS Biological aspects of haustorial parasitism have significant effects on the configuration of the plastid genome. Approximately half the diversity of haustorial parasites belongs to the order Santalales, where a clearer picture of plastome evolution in relation to parasitism is starting to emerge. However, in previous studies of plastome evolution there is still a notable under-representation of members from non-parasitic and deep-branching hemiparasitic lineages, limiting evolutionary inference around the time of transition to a parasitic lifestyle. To expand taxon sampling relevant to this transition we therefore targeted three families of non-parasites (Erythropalaceae, Strombosiaceae and Coulaceae), two families of root-feeding hemiparasites (Ximeniaceae and Olacaceae) and two families of uncertain parasitic status (Aptandraceae and Octoknemaceae). With data from these lineages we aimed to explore plastome evolution in relation to the evolution of parasitism. METHODS From 29 new samples we sequenced and annotated plastomes and the nuclear ribosomal cistron. We examined phylogenetic patterns, plastome evolution, and patterns of relaxed or intensified selection in plastid genes. Available transcriptome data were analysed to investigate potential transfer of infA to the nuclear genome. RESULTS Phylogenetic relationships indicate a single functional loss of all plastid ndh genes (ndhA-K) in a clade formed by confirmed parasites and Aptandraceae, and the loss coincides with major size and boundary shifts of the inverted repeat (IR) region. Depending on an autotrophic or heterotrophic lifestyle in Aptandraceae, plastome changes are either correlated with or pre-date the evolution of parasitism. Phylogenetic patterns also indicate repeated loss of infA from the plastome, and based on the presence of transcribed sequences with presequences corresponding to thylakoid luminal transit peptides, we infer that the genes were transferred to the nuclear genome. CONCLUSIONS Except for the loss of the ndh complex, relatively few genes have been lost from the plastome in deep-branching root parasites in Santalales. Prior to loss of the ndh genes, they show signs of relaxed selection indicative of their dispensability. To firmly establish a potential correlation between ndh gene loss, plastome instability and evolution of parasitism, it is pertinent to refute or confirm a parasitic lifestyle in all Santalales clades.
Collapse
Affiliation(s)
- Maja Edlund
- Department of Ecology, Environment and Plant Sciences, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Benjamin M Anderson
- Western Australia Herbarium, Department of Biodiversity, Conservation and Attractions, Locked Bag 104, Bentley Delivery Centre, 6983, Australia
| | - Huei-Jiun Su
- Department of Earth and Life Sciences, University of Taipei, Taipei 100234, Taiwan
| | - Tanner Robison
- 121 Boyce Thompson Institute, Ithaca, NY 14853, USA
- Plant Biology Section, School of Integrative Plant Science, CALS, Cornell University, Ithaca, NY 14853, USA
| | - Marcos A Caraballo-Ortiz
- Department of Botany, National Museum of Natural History, Smithsonian Institution, MRC-166, PO Box 37012, Washington, DC 22013-7012, USA
| | - Joshua P Der
- Department of Biological Science (MH-282), California State University, Fullerton, PO Box 6850, Fullerton, CA 92834-6850, USA
| | - Daniel L Nickrent
- Plant Biology Section, School of Integrative Plant Science, CALS, Cornell University, Ithaca, NY 14853, USA
| | - Gitte Petersen
- Department of Ecology, Environment and Plant Sciences, Stockholm University, SE-106 91 Stockholm, Sweden
| |
Collapse
|
2
|
Le CT, Lu L, Nguyen VD, Chen Z, Omollo WO, Liu B. Phylogeny, character evolution and historical biogeography of Scurrulinae (Loranthaceae): new insights into the circumscription of the genus Taxillus. BMC PLANT BIOLOGY 2024; 24:440. [PMID: 38778295 PMCID: PMC11110394 DOI: 10.1186/s12870-024-05126-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 05/09/2024] [Indexed: 05/25/2024]
Abstract
BACKGROUND Exploring the relationship between parasitic plants and answering taxonomic questions is still challenging. The subtribe Scurrulinae (Loranthaceae), which has a wide distribution in Asia and Africa, provides an excellent example to illuminate this scenario. Using a comprehensive taxon sampling of the subtribe, this study focuses on infer the phylogenetic relationships within Scurrulinae, investigate the phylogeny and biogeography of the subtribe, and establish a phylogenetically-based classification incorporating both molecular and morphological evidence. We conducted phylogenetic, historical biogeography, and ancestral character state reconstruction analyses of Scurrulinae based on the sequences of six DNA regions from 89 individuals to represent all five tribes of the Loranthaceae and the dataset from eleven morphological characters. RESULTS The results strongly support the non-monophyletic of Scurrulinae, with Phyllodesmis recognized as a separate genus from its allies Taxillus and Scurrula based on the results from molecular data and morphological character reconstruction. The mistletoe Scurrulinae originated in Asia during the Oligocene. Scurrulinae was inferred to have been widespread in Asia but did not disperse to other areas. The African species of Taxillus, T. wiensii, was confirmed to have originated in Africa from African Loranthaceae ca. 17 Ma, and evolved independently from Asian members of Taxillus. CONCLUSIONS This study based on comprehensive taxon sampling of the subtribe Scurrulinae, strongly supports the relationship between genera. The taxonomic treatment for Phyllodesmis was provided. The historical biogeography of mistletoe Scurrulinae was determined with origin in Asia during the Oligocene. Taxillus and Scurrula diverged during the climatic optimum in the middle Miocene. Taxillus wiensii originated in Africa from African Loranthaceae, and is an independent lineage from the Asian species of Taxillus. Diversification of Scurrulinae and the development of endemic species in Asia may have been supported by the fast-changing climate, including cooling, drying, and the progressive uplift of the high mountains in central Asia, especially during the late Pliocene and Pleistocene.
Collapse
Affiliation(s)
- Chi Toan Le
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- Hanoi Pedagogical University 2, 32 Nguyen Van Linh, Xuanhoa, Phucyen, Vinhphuc, Vietnam
| | - Limin Lu
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Van Du Nguyen
- Institute of Ecology and Biological Resources (IEBR), Vietnam Academy of Science and Technology (VAST), Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology, Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam
| | - Zhiduan Chen
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Wyckliffe Omondi Omollo
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Bing Liu
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China.
| |
Collapse
|
3
|
Tang L, Wang T, Hou L, Zhang G, Deng M, Guo X, Ji Y. Comparative and phylogenetic analyses of Loranthaceae plastomes provide insights into the evolutionary trajectories of plastome degradation in hemiparasitic plants. BMC PLANT BIOLOGY 2024; 24:406. [PMID: 38750463 PMCID: PMC11097404 DOI: 10.1186/s12870-024-05094-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 05/02/2024] [Indexed: 05/18/2024]
Abstract
BACKGROUND The lifestyle transition from autotrophy to heterotrophy often leads to extensive degradation of plastomes in parasitic plants, while the evolutionary trajectories of plastome degradation associated with parasitism in hemiparasitic plants remain poorly understood. In this study, phylogeny-oriented comparative analyses were conducted to investigate whether obligate Loranthaceae stem-parasites experienced higher degrees of plastome degradation than closely related facultative root-parasites and to explore the potential evolutionary events that triggered the 'domino effect' in plastome degradation of hemiparasitic plants. RESULTS Through phylogeny-oriented comparative analyses, the results indicate that Loranthaceae hemiparasites have undergone varying degrees of plastome degradation as they evolved towards a heterotrophic lifestyle. Compared to closely related facultative root-parasites, all obligate stem-parasites exhibited an elevated degree plastome degradation, characterized by increased downsizing, gene loss, and pseudogenization, thereby providing empirical evidence supporting the theoretical expectation that evolution from facultative parasitism to obligate parasitism may result in a higher degree of plastome degradation in hemiparasites. Along with infra-familial divergence in Loranthaceae, several lineage-specific gene loss/pseudogenization events occurred at deep nodes, whereas further independent gene loss/pseudogenization events were observed in shallow branches. CONCLUSIONS The findings suggest that in addition to the increasing levels of nutritional reliance on host plants, cladogenesis can be considered as another pivotal evolutionary event triggering the 'domino effect' in plastome degradation of hemiparasitic plants. These findings provide new insights into the evolutionary trajectory of plastome degradation in hemiparasitic plants.
Collapse
Affiliation(s)
- Lilei Tang
- Key Laboratory of Phytochemistry and Natural Medicines, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Tinglu Wang
- Key Laboratory of Phytochemistry and Natural Medicines, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Luxiao Hou
- Key Laboratory of Phytochemistry and Natural Medicines, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, 650201, China
| | - Guangfei Zhang
- School of Ecology and Environmental Science, Yunnan University, Kunming, Yunnan, 650504, China
- Yunnan Key Laboratory of Plant Reproductive Adaptation and Evolutionary Ecology and Institute of Biodiversity, Yunnan University, Kunming, Yunnan, 650504, China
| | - Min Deng
- School of Ecology and Environmental Science, Yunnan University, Kunming, Yunnan, 650504, China.
- Yunnan Key Laboratory of Plant Reproductive Adaptation and Evolutionary Ecology and Institute of Biodiversity, Yunnan University, Kunming, Yunnan, 650504, China.
| | - Xiaorong Guo
- School of Ecology and Environmental Science, Yunnan University, Kunming, Yunnan, 650504, China.
- Yunnan Key Laboratory of Plant Reproductive Adaptation and Evolutionary Ecology and Institute of Biodiversity, Yunnan University, Kunming, Yunnan, 650504, China.
| | - Yunheng Ji
- Key Laboratory of Phytochemistry and Natural Medicines, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China.
| |
Collapse
|
4
|
Morales-Saldaña S, Villafán E, Vásquez-Aguilar AA, Ramírez-Barahona S, Ibarra-Laclette E, Ornelas JF. The complete chloroplast genome sequence of Psittacanthus schiedeanus (Cham. & Schltdl.) G.Don. (Santalales: Loranthaceae), the first plastome of a mistletoe species in the Psittacantheae tribe. Mitochondrial DNA B Resour 2024; 9:5-10. [PMID: 38187014 PMCID: PMC10769147 DOI: 10.1080/23802359.2023.2298078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 12/18/2023] [Indexed: 01/09/2024] Open
Abstract
Psittacanthus schiedeanus (Cham. & Schltdl.) G.Don., 1834, is a mistletoe species in the Loranthaceae, characteristic of the canopy in cloud forest edges and widely distributed in northern Mesoamerica. Here, we report the complete chloroplast genome sequence of P. schiedeanus, the first for a species in the Psittacantheae tribe. The circularized quadripartite structure of the P. schiedeanus chloroplast genome was 122,586 bp in length and included a large single-copy region of 72,507 bp and two inverted repeats of 21,283 bp separated by a small single-copy region of 7,513 bp. The genome contained 112 genes, of which 96 are unique, including 65 protein-coding genes, 27 transfer RNA, and four ribosomal RNA. The overall GC content in the plastome of P. schiedeanus is 36.9%. Based on 43 published complete chloroplast genome sequences for species in the families Loranthaceae and Santalaceae (Santalales), the maximum-likelihood phylogenetic tree with high-support bootstrap values indicated that P. schiedeanus in the Psittacantheae tribe is sister to the tribe Lorantheae. The chloroplast genome provided in this study represents a valuable resource for genetic, phylogenetic and conservation studies of Psittacanthus species, and an important advance for unraveling the evolutionary history of these hemiparasitic plants.
Collapse
Affiliation(s)
- Saddan Morales-Saldaña
- Red de Biología Evolutiva, Instituto de Ecología, A.C. (INECOL), Xalapa, Veracruz, Mexico
| | - Emanuel Villafán
- Red de Estudios Moleculares Avanzados, Instituto de Ecología, A.C. (INECOL), Xalapa, Veracruz, Mexico
| | | | - Santiago Ramírez-Barahona
- Departamento de Botánica, Instituto de Biología, Universidad Nacional Autónoma de México (UNAM), Ciudad de México, Mexico
| | - Enrique Ibarra-Laclette
- Red de Estudios Moleculares Avanzados, Instituto de Ecología, A.C. (INECOL), Xalapa, Veracruz, Mexico
| | - Juan Francisco Ornelas
- Red de Biología Evolutiva, Instituto de Ecología, A.C. (INECOL), Xalapa, Veracruz, Mexico
| |
Collapse
|
5
|
Krawczyk K, Paukszto Ł, Maździarz M, Sawicki J. The low level of plastome differentiation observed in some lineages of Poales hinders molecular species identification. FRONTIERS IN PLANT SCIENCE 2023; 14:1275377. [PMID: 38143577 PMCID: PMC10739336 DOI: 10.3389/fpls.2023.1275377] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 11/23/2023] [Indexed: 12/26/2023]
Abstract
Chloroplast genomes are a source of information successfully used in various fields of plant genetics, including molecular species identification. However, recent studies indicate an extremely low level of interspecific variability in the plastomes of some taxonomic groups of plants, including the genus Stipa L., which is a representative of the grass family. In this study we aimed to analyze the level of chloroplast genome diversity within particular genera as well as the effectiveness of identifying plant species in the Poaceae family and the other representatives of Poales order. Analysis of complete plastid genome alignments created for 96 genera comprising 793 species and 1707 specimens obtained from the GenBank database allowed defining and categorizing molecular diagnostic characters distinguishing the analyzed species from the other representatives of the genus. The results also demonstrate which species do not have any species-specific mutations, thereby they cannot be identified on the basis of differences between the complete chloroplast genomes. Our research showed a huge diversity of the analyzed species in terms of the number of molecular diagnostic characters and indicated which genera pose a particular challenge in terms of molecular species identification. The results show that a very low level of genetic diversity between plastomes is not uncommon in Poales. This is the first extensive research on super-barcoding that tests this method on a large data set and illustrates its effectiveness against the background of phylogenetic relationships.
Collapse
Affiliation(s)
- Katarzyna Krawczyk
- Department of Botany and Nature Protection, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | | | | | | |
Collapse
|
6
|
Darshetkar AM, Pable AA, Nadaf AB, Barvkar VT. Understanding parasitism in Loranthaceae: Insights from plastome and mitogenome of Helicanthes elastica. Gene 2023; 861:147238. [PMID: 36736502 DOI: 10.1016/j.gene.2023.147238] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 01/13/2023] [Accepted: 01/26/2023] [Indexed: 02/05/2023]
Abstract
Loranthaceae is the largest family of the order Santalales and includes root and stem hemiparasites. The parasites are known to exhibit reductions in the genomic features as well as relaxed or intensified selection shifts. In this study, we report plastome and mitogenome sequence of Helicanthes elastica (subtribe Amyeminae, tribe Lorantheae), an endemic, monotypic genus of Western Ghats, India growing on remarkably diverse host range. The length of plastome sequence was 1,28,805 bp while that of mitogenome was 1,65,273 bp. This is the smallest mitogenome from Loranthaceae reported till date. The plastome of Helicanthes exhibited loss of ndh genes (ψndhB), ψinfA, rps15, rps16, rpl32, trnK-UUU, trnG-UCC, trnV-UAC and trnA-UGC while mitogenome exhibited pseudogenized cox2, nad1 and nad4 genes. The comparative study of Loranthaceae plastomes revealed that the pseudogenization or loss of genes was not specific to any genus or tribe and variation was noted in the number of introns of clpP gene in the family. Several photosynthetic genes have undergone relaxed selection supporting lower photosynthetic rates in parasitic plants while some respiratory genes exhibited intensified selection supporting the idea of host-parasite arm race in Loranthaceae. The plastome gene content was found conserved in root hemiparasites compared to stem hemiparasites. The atp1 gene of mitogenome was chimeric and part of it exhibited similarities with Lamiales members. The phylogenetic analysis based on plastid genes placed Helicanthes sister to the members of subtribe Dendrophthoinae.
Collapse
Affiliation(s)
| | - Anupama A Pable
- Department of Microbiology, Savitribai Phule Pune University, Pune 411007, India.
| | | | - Vitthal T Barvkar
- Department of Botany, Savitribai Phule Pune University, Pune 411007, India.
| |
Collapse
|
7
|
Wu L, Fan P, Zhou J, Li Y, Xu Z, Lin Y, Wang Y, Song J, Yao H. Gene Losses and Homology of the Chloroplast Genomes of Taxillus and Phacellaria Species. Genes (Basel) 2023; 14:genes14040943. [PMID: 37107701 PMCID: PMC10137875 DOI: 10.3390/genes14040943] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 04/17/2023] [Accepted: 04/18/2023] [Indexed: 04/29/2023] Open
Abstract
Research on the chloroplast genome of parasitic plants is limited. In particular, the homology between the chloroplast genomes of parasitic and hyperparasitic plants has not been reported yet. In this study, three chloroplast genomes of Taxillus (Taxillus chinensis, Taxillus delavayi, and Taxillus thibetensis) and one chloroplast genome of Phacellaria (Phacellaria rigidula) were sequenced and analyzed, among which T. chinensis is the host of P. rigidula. The chloroplast genomes of the four species were 119,941-138,492 bp in length. Compared with the chloroplast genome of the autotrophic plant Nicotiana tabacum, all of the ndh genes, three ribosomal protein genes, three tRNA genes and the infA gene were lost in the three Taxillus species. Meanwhile, in P. rigidula, the trnV-UAC gene and the ycf15 gene were lost, and only one ndh gene (ndhB) existed. The results of homology analysis showed that the homology between P. rigidula and its host T. chinensis was low, indicating that P. rigidula grows on its host T. chinensis but they do not share the chloroplast genome. In addition, horizontal gene transfer was not found between P. rigidula and its host T. chinensis. Several candidate highly variable regions in the chloroplast genomes of Taxillus and Phacellaria species were selected for species identification study. Phylogenetic analysis revealed that the species of Taxillus and Scurrula were closely related and supported that Scurrula and Taxillus should be treated as congeneric, while species in Phacellaria had a close relationship with that in Viscum.
Collapse
Affiliation(s)
- Liwei Wu
- Key Lab of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Panhui Fan
- Key Lab of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Jianguo Zhou
- Key Lab of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Yonghua Li
- Faculty of Pharmacy, Guangxi University of Chinese Medicine, Nanning 530004, China
| | - Zhichao Xu
- College of Life Science, Northeast Forestry University, Harbin 150040, China
| | - Yulin Lin
- Key Lab of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Yu Wang
- Key Lab of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Jingyuan Song
- Key Lab of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Hui Yao
- Key Lab of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| |
Collapse
|
8
|
Comparative Analyses of Chloroplast Genomes for Parasitic Species of Santalales in the Light of Two Newly Sequenced Species, Taxillus nigrans and Scurrula parasitica. Genes (Basel) 2023; 14:genes14030560. [PMID: 36980832 PMCID: PMC10048710 DOI: 10.3390/genes14030560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 02/16/2023] [Accepted: 02/19/2023] [Indexed: 02/26/2023] Open
Abstract
When a flowering plant species changes its life history from self-supply to parasite, its chloroplast genomes may have experienced functional physical reduction, and gene loss. Most species of Santalales are hemiparasitic and few studies focus on comparing the chloroplast genomes of the species from this order. In this study, we collected and compared chloroplast genomes of 12 species of Santalales and sequenced the chloroplast genomes of Taxillus nigrans and Scurrula parasitica for the first time. The chloroplast genomes for these species showed typical quadripartite structural organization. Phylogenetic analysis suggested that these 12 species of Santalales clustered into three clades: Viscum (4 spp.) and Osyris (1 sp.) in the Santalaceae and Champereia (1 sp.) in the Opiliaceae formed one clade, while Taxillus (3 spp.) and Scurrula (1 sp.) in the Loranthaceae and Schoepfia (1 sp.) in the Schoepfiaceae formed another clade. Erythropalum (1 sp.), in the Erythropalaceae, appeared as a third, most distant, clade within the Santalales. In addition, both Viscum and Taxillus are monophyletic, and Scurrula is sister to Taxillus. A comparative analysis of the chloroplast genome showed differences in genome size and the loss of genes, such as the ndh genes, infA genes, partial ribosomal genes, and tRNA genes. The 12 species were classified into six categories by the loss, order, and structure of genes in the chloroplast genome. Each of the five genera (Viscum, Osyris, Champereia, Schoepfia, and Erythropalum) represented an independent category, while the three Taxillus species and Scurrula were classified into a sixth category. Although we found that different genes were lost in various categories, most genes related to photosynthesis were retained in the 12 species. Hence, the genetic information accorded with observations that they are hemiparasitic species. Our comparative genomic analyses can provide a new case for the chloroplast genome evolution of parasitic species.
Collapse
|
9
|
Gene Losses and Plastome Degradation in the Hemiparasitic Species Plicosepalus acaciae and Plicosepalus curviflorus: Comparative Analyses and Phylogenetic Relationships among Santalales Members. PLANTS 2022; 11:plants11141869. [PMID: 35890506 PMCID: PMC9317152 DOI: 10.3390/plants11141869] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 06/18/2022] [Accepted: 07/07/2022] [Indexed: 11/22/2022]
Abstract
The Plicosepalus genus includes hemiparasitic mistletoe and belongs to the Loranthaceae family, and it has several medicinal uses. In the present study, we sequenced the complete plastomes of two species, Plicosepalus acaciae and Plicosepalus curviflorus, and compared them with the plastomes of photosynthetic species (hemiparasites) and nonphotosynthetic species (holoparasites) in the order Santalales. The complete chloroplast genomes of P. acaciae and P. curviflorus are circular molecules with lengths of 120,181 bp and 121,086 bp, respectively, containing 106 and 108 genes and 63 protein-coding genes, including 25 tRNA and 4 rRNA genes for each species. We observed a reduction in the genome size of P. acaciae and P. curviflorus and the loss of certain genes, although this reduction was less than that in the hemiparasite and holoparasitic cp genomes of the Santalales order. Phylogenetic analysis supported the taxonomic state of P. acaciae and P. curviflorus as members of the family Loranthaceae and tribe Lorantheae; however, the taxonomic status of certain tribes of Loranthaceae must be reconsidered and the species that belong to it must be verified. Furthermore, available chloroplast genome data of parasitic plants could help to strengthen efforts in weed management and encourage biotechnology research to improve host resistance.
Collapse
|
10
|
Ibarra-Laclette E, Venancio-Rodríguez CA, Vásquez-Aguilar AA, Alonso-Sánchez AG, Pérez-Torres CA, Villafán E, Ramírez-Barahona S, Galicia S, Sosa V, Rebollar EA, Lara C, González-Rodríguez A, Díaz-Fleisher F, Ornelas JF. Transcriptional Basis for Haustorium Formation and Host Establishment in Hemiparasitic Psittacanthus schiedeanus Mistletoes. Front Genet 2022; 13:929490. [PMID: 35769994 PMCID: PMC9235361 DOI: 10.3389/fgene.2022.929490] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 05/20/2022] [Indexed: 11/13/2022] Open
Abstract
The mistletoe Psittacanthus schiedeanus, a keystone species in interaction networks between plants, pollinators, and seed dispersers, infects a wide range of native and non-native tree species of commercial interest. Here, using RNA-seq methodology we assembled the whole circularized quadripartite structure of P. schiedeanus chloroplast genome and described changes in the gene expression of the nuclear genomes across time of experimentally inoculated seeds. Of the 140,467 assembled and annotated uniGenes, 2,000 were identified as differentially expressed (DEGs) and were classified in six distinct clusters according to their expression profiles. DEGs were also classified in enriched functional categories related to synthesis, signaling, homoeostasis, and response to auxin and jasmonic acid. Since many orthologs are involved in lateral or adventitious root formation in other plant species, we propose that in P. schiedeanus (and perhaps in other rootless mistletoe species), these genes participate in haustorium formation by complex regulatory networks here described. Lastly, and according to the structural similarities of P. schiedeanus enzymes with those that are involved in host cell wall degradation in fungi, we suggest that a similar enzymatic arsenal is secreted extracellularly and used by mistletoes species to easily parasitize and break through tissues of the host.
Collapse
Affiliation(s)
- Enrique Ibarra-Laclette
- Instituto de Ecología A.C. (INECOL), Red de Estudios Moleculares Avanzados (REMAv), Xalapa, Mexico
| | | | | | | | - Claudia-Anahí Pérez-Torres
- Instituto de Ecología A.C. (INECOL), Red de Estudios Moleculares Avanzados (REMAv), Xalapa, Mexico
- Investigador por Mexico-CONACyT en el Instituto de Ecología A.C. (INECOL), Xalapa, Mexico
| | - Emanuel Villafán
- Instituto de Ecología A.C. (INECOL), Red de Estudios Moleculares Avanzados (REMAv), Xalapa, Mexico
| | - Santiago Ramírez-Barahona
- Departamento de Botánica, Instituto de Biología, Universidad Nacional Autónoma de Mexico (UNAM), Ciudad de Mexico, Mexico
| | - Sonia Galicia
- Instituto de Ecología A.C. (INECOL), Red de Biología Evolutiva, Xalapa, Mexico
| | - Victoria Sosa
- Instituto de Ecología A.C. (INECOL), Red de Biología Evolutiva, Xalapa, Mexico
| | - Eria A. Rebollar
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de Mexico, Cuernavaca, Mexico
| | - Carlos Lara
- Centro de Investigación en Ciencias Biológicas, Universidad Autónoma de Tlaxcala, Tlaxcala, Mexico
| | - Antonio González-Rodríguez
- Laboratorio de Genética de la Conservación, Instituto de Investigaciones en Ecosistemas y Sustentabilidad (IIES), UNAM, Morelia, Mexico
| | | | | |
Collapse
|