1
|
Wang Y, Zhang G, Huang Y, Guo M, Song J, Zhang T, Long Y, Wang B, Liu H. A Potential Biofertilizer—Siderophilic Bacteria Isolated From the Rhizosphere of Paris polyphylla var. yunnanensis. Front Microbiol 2022; 13:870413. [PMID: 35615507 PMCID: PMC9125218 DOI: 10.3389/fmicb.2022.870413] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Accepted: 03/28/2022] [Indexed: 11/13/2022] Open
Abstract
The increasing demands for crop production have become a great challenge while people also realizing the significance of reductions in synthetic chemical fertilizer use. Plant growth-promoting rhizobacteria (PGPR) are proven biofertilizers for increasing crop yields by promoting plant growth via various direct or indirect mechanisms. Siderophilic bacteria, as an important type of PGPR, can secrete siderophores to chelate unusable Fe3+ in the soil for plant growth. Siderophilic bacteria have been shown to play vital roles in preventing diseases and enhancing the growth of plants. Paris polyphylla var. yunnanensis (PPVY) is an important traditional Chinese herb. However, reports about its siderophilic bacteria are still rare. This study firstly isolated siderophilic bacteria from the rhizosphere soil of PPVY, identified by morphological and physio-biochemical characteristics as well as 16S rRNA sequence analysis. The dominant genus in the rhizobacteria of PPVY was Bacillus. Among 22 isolates, 21 isolates produced siderophores. The relative amount of siderophores ranged from 4 to 41%. Most of the isolates produced hydroxamate siderophores and some produced catechol. Four isolates belonging to Enterobacter produced the catechol type, and none of them produced carboxylate siderophores. Intriguingly, 16 strains could produce substances that have inhibitory activity against Candida albicans only in an iron-limited medium (SA medium). The effects of different concentrations of Fe3+ and three types of synthetic chemical fertilizers on AS19 growth, siderophore production, and swimming motility were first evaluated from multiple aspects. The study also found that the cell-free supernatant (CFS) with high siderophore units (SUs) of AS19 strain could significantly promote the germination of pepper and maize seeds and the development of the shoots and leaves of Gynura divaricata (Linn.). The bacterial solution of AS19 strain could significantly promote the elongation of the roots of G. divaricata (Linn.). Due to its combined traits promoting plant growth and seed germination, the AS19 has the potential to become a bioinoculant. This study will broaden the application prospects of the siderophilic bacteria-AS19 as biofertilizers for future sustainable agriculture.
Collapse
Affiliation(s)
- Yihan Wang
- Engineering Research Center of Medical Biotechnology, School of Biology and Engineering, Guizhou Medical University, Guiyang, China
| | - Gongyou Zhang
- Engineering Research Center of Medical Biotechnology, School of Biology and Engineering, Guizhou Medical University, Guiyang, China
| | - Ya Huang
- Engineering Research Center of Medical Biotechnology, School of Biology and Engineering, Guizhou Medical University, Guiyang, China
| | - Min Guo
- Engineering Research Center of Medical Biotechnology, School of Biology and Engineering, Guizhou Medical University, Guiyang, China
| | - Juhui Song
- Engineering Research Center of Medical Biotechnology, School of Biology and Engineering, Guizhou Medical University, Guiyang, China
| | - Tingting Zhang
- Engineering Research Center of Medical Biotechnology, School of Biology and Engineering, Guizhou Medical University, Guiyang, China
- Key Laboratory of Biology and Medical Engineering, Immune Cells and Antibody Engineering Research Center of Guizhou Province, School of Biology and Engineering, Guizhou Medical University, Guiyang, China
| | - Yaohang Long
- Engineering Research Center of Medical Biotechnology, School of Biology and Engineering, Guizhou Medical University, Guiyang, China
- Key Laboratory of Biology and Medical Engineering, Immune Cells and Antibody Engineering Research Center of Guizhou Province, School of Biology and Engineering, Guizhou Medical University, Guiyang, China
| | - Bing Wang
- Engineering Research Center of Medical Biotechnology, School of Biology and Engineering, Guizhou Medical University, Guiyang, China
- Key Laboratory of Biology and Medical Engineering, Immune Cells and Antibody Engineering Research Center of Guizhou Province, School of Biology and Engineering, Guizhou Medical University, Guiyang, China
- *Correspondence: Bing Wang,
| | - Hongmei Liu
- Engineering Research Center of Medical Biotechnology, School of Biology and Engineering, Guizhou Medical University, Guiyang, China
- Key Laboratory of Biology and Medical Engineering, Immune Cells and Antibody Engineering Research Center of Guizhou Province, School of Biology and Engineering, Guizhou Medical University, Guiyang, China
- School of Basic Medicine Science, Guizhou Medical University, Guiyang, China
- Hongmei Liu,
| |
Collapse
|