1
|
Sattler S, Gollomp S, Curry A. A Narrative Literature Review of the Established Safety of Human Serum Albumin Use as a Stabilizer in Aesthetic Botulinum Toxin Formulations Compared to Alternatives. Toxins (Basel) 2023; 15:619. [PMID: 37888650 PMCID: PMC10610632 DOI: 10.3390/toxins15100619] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 10/06/2023] [Accepted: 10/11/2023] [Indexed: 10/28/2023] Open
Abstract
Despite more than 80 years of use in a number of conditions, including in critically ill patients, comments have recently arisen regarding the safety and efficacy of human serum albumin (HSA) as a therapeutic product and stabilizer/excipient in botulinum neurotoxins. This review summarizes the literature on the safety of HSA. Beyond decades of safe use, the largest clinical dataset of HSA safety is a large meta-analysis of HSA supplier data, which found only an extremely remote risk of serious adverse events across millions of doses of therapeutic concentrations of HSA. There is a paucity of literature identifying HSA-specific adverse events when used as a stabilizer/excipient; however, studies of HSA-containing botulinum neurotoxins (BoNTs) suggest that adverse events are not related to HSA. Polysorbates, which are synthetically produced and not physiologically inert, are contained in pending or new-to-market BoNT formulations. In contrast to HSA, evidence exists to suggest that polysorbates (particularly PS20/PS80) can cause serious adverse events (e.g., hypersensitivity, anaphylaxis, and immunogenicity).
Collapse
|
2
|
Brosig S, Cucuzza S, Serno T, Bechtold-Peters K, Buecheler J, Zivec M, Germershaus O, Gallou F. Not the Usual Suspects: Alternative Surfactants for Biopharmaceuticals. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37450418 DOI: 10.1021/acsami.3c05610] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/18/2023]
Abstract
Therapeutically relevant proteins naturally adsorb to interfaces, causing aggregation which in turn potentially leads to numerous adverse consequences such as loss of activity or unwanted immunogenic reactions. Surfactants are ubiquitously used in biotherapeutics drug development to oppose interfacial stress, yet, the choice of the surfactant is extremely limited: to date, only polysorbates (PS20/80) and poloxamer 188 are used in commercial products. However, both surfactant families suffer from severe degradation and impurities of the raw material, which frequently increases the risk of particle generation, chemical protein degradation, and potential adverse immune reactions. Herein, we assessed a total of 40 suitable alternative surfactant candidates and subsequently performed a selection through a three-gate screening process employing four protein modalities encompassing six different formulations. The screening is based on short-term agitation-induced aggregation studies coupled to particle analysis and surface tension characterization, followed by long-term quiescence stability studies connected to protein purity measurements and particle analysis. The study concludes by assessing the surfactant's chemical and enzymatic degradation propensity. The candidates emerging from the screening are de novo α-tocopherol-derivatives named VEDG-2.2 and VEDS, produced ad hoc for this study. They display protein stabilization potential comparable or better than polysorbates together with an increased resistance to chemical and enzymatic degradation, thus representing valuable alternative surfactants for biotherapeutics.
Collapse
Affiliation(s)
- Sebastian Brosig
- Novartis Pharma AG, GDD, TRD Biologics & CGT, Basel CH-4002, Switzerland
| | - Stefano Cucuzza
- Novartis Pharma AG, GDD, TRD Biologics & CGT, Basel CH-4002, Switzerland
| | - Tim Serno
- Novartis Pharma AG, GDD, TRD Biologics & CGT, Basel CH-4002, Switzerland
| | | | - Jakob Buecheler
- Novartis Pharma AG, GDD, TRD Biologics & CGT, Basel CH-4002, Switzerland
| | - Matej Zivec
- Novartis Pharma AG, GDD, TRD Biologics & CGT, Menges 1234, Slovenia
| | - Oliver Germershaus
- School of Life Sciences, University of Applied Sciences Northwestern Switzerland, Hofackerstrasse 30, Muttenz 4132, Switzerland
| | - Fabrice Gallou
- Novartis Pharma AG, GDD, CHAD, Basel CH-4057, Switzerland
| |
Collapse
|
3
|
Varga N, Bélteki R, Juhász Á, Csapó E. Core-Shell Structured PLGA Particles Having Highly Controllable Ketoprofen Drug Release. Pharmaceutics 2023; 15:pharmaceutics15051355. [PMID: 37242597 DOI: 10.3390/pharmaceutics15051355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 04/06/2023] [Accepted: 04/26/2023] [Indexed: 05/28/2023] Open
Abstract
The non-steroid anti-inflammatory drug ketoprofen (KP) as a model molecule is encapsulated in different poly(lactide-co-glycolide) (PLGA) nanostructured particles, using Tween20 (TWEEN) and Pluronic F127 (PLUR) as stabilizers to demonstrate the design of a biocompatible colloidal carrier particles with highly controllable drug release feature. Based on TEM images the formation of well-defined core-shell structure is highly favorable using nanoprecipitation method. Stabile polymer-based colloids with ~200-210 nm hydrodynamic diameter can be formed by successful optimization of the KP concentration with the right choice of stabilizer. Encapsulation efficiency (EE%) of 14-18% can be achieved. We clearly confirmed that the molecular weight of the stabilizer thus its structure greatly controls the drug release from the PLGA carrier particles. It can be determined that ~20% and ~70% retention is available with the use of PLUR and TWEEN, respectively. This measurable difference can be explained by the fact that the non-ionic PLUR polymer provides a steric stabilization of the carrier particles in the form of a loose shell, while the adsorption of the non-ionic biocompatible TWEEN surfactant results in a more compact and well-ordered shell around the PLGA particles. In addition, the release property can be further tuned by decreasing the hydrophilicity of PLGA by changing the monomer ratio in the range of ~20-60% (PLUR) and 70-90% (TWEEN).
Collapse
Affiliation(s)
- Norbert Varga
- MTA-SZTE Lendület "Momentum" Noble Metal Nanostructures Research Group, University of Szeged, Rerrich B. Sqr. 1, H-6720 Szeged, Hungary
- Interdisciplinary Excellence Center, Department of Physical Chemistry and Materials Science, University of Szeged, Rerrich B. Sqr. 1, H-6720 Szeged, Hungary
| | - Rita Bélteki
- MTA-SZTE Lendület "Momentum" Noble Metal Nanostructures Research Group, University of Szeged, Rerrich B. Sqr. 1, H-6720 Szeged, Hungary
- Interdisciplinary Excellence Center, Department of Physical Chemistry and Materials Science, University of Szeged, Rerrich B. Sqr. 1, H-6720 Szeged, Hungary
| | - Ádám Juhász
- MTA-SZTE Lendület "Momentum" Noble Metal Nanostructures Research Group, University of Szeged, Rerrich B. Sqr. 1, H-6720 Szeged, Hungary
- Interdisciplinary Excellence Center, Department of Physical Chemistry and Materials Science, University of Szeged, Rerrich B. Sqr. 1, H-6720 Szeged, Hungary
| | - Edit Csapó
- MTA-SZTE Lendület "Momentum" Noble Metal Nanostructures Research Group, University of Szeged, Rerrich B. Sqr. 1, H-6720 Szeged, Hungary
- Interdisciplinary Excellence Center, Department of Physical Chemistry and Materials Science, University of Szeged, Rerrich B. Sqr. 1, H-6720 Szeged, Hungary
| |
Collapse
|
4
|
Kim J, Kwak S, Park MS, Rhee CH, Yang GH, Lee J, Son WC, Kang WH. Correction: Safety verification for polysorbate 20, pharmaceutical excipient for intramuscular administration, in Sprague-Dawley rats and New Zealand White rabbits. PLoS One 2022; 17:e0267238. [PMID: 35417499 PMCID: PMC9007339 DOI: 10.1371/journal.pone.0267238] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
5
|
Hada S, Lee JC, Lee EC, Ji S, Nam JS, Yun BJ, Na DH, Kim NA, Jeong SH. Dissociation mechanics and stability of type A botulinum neurotoxin complex by means of biophysical evaluation. JOURNAL OF PHARMACEUTICAL INVESTIGATION 2022. [DOI: 10.1007/s40005-022-00570-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
6
|
Philipp-Dormston WG, Bertossi D, Houschyar K, Rahman E. Botulinum Toxins for Aesthetic Facial Injections - A scientific review to support evidence-based best practice. Facial Plast Surg 2022; 38:152-155. [PMID: 34983077 DOI: 10.1055/a-1730-8270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Abstract
Botulinum Toxins (BoNT) are complex biological products. Each licensed BoNTA has its own individual characteristics resulting into different attributes, some of them being of clinical relevance. Besides profound anatomical knowledge and understanding of aesthetic principles, the responsible injecting physician should be aware of those pharmaceutical and clinical properties. Especially against the background of new BoNTA formulations receiving approval by the authorities a critical and dedicated discussion on the individual characteristics should take place and the potential relevance on the treatment outcome should be taken into consideration.
Collapse
Affiliation(s)
| | | | - Khosrow Houschyar
- Dermatology, Hautzentrum Koeln, Klinik Links vom Rhein, Cologne, Germany, Koeln, Germany
| | - Eqram Rahman
- Plastic Surgery, Plastic Surgery, Royal Free Hospitals & University College London, London, UK., London, United Kingdom of Great Britain and Northern Ireland
| |
Collapse
|
7
|
Balhaddad AA, Xia Y, Lan Y, Mokeem L, Ibrahim MS, Weir MD, Xu HHK, Melo MAS. Magnetic-Responsive Photosensitizer Nanoplatform for Optimized Inactivation of Dental Caries-Related Biofilms: Technology Development and Proof of Principle. ACS NANO 2021; 15:19888-19904. [PMID: 34878250 DOI: 10.1021/acsnano.1c07397] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Conventional antibiotic therapies for biofilm-trigged oral diseases are becoming less efficient due to the emergence of antibiotic-resistant bacterial strains. Antimicrobial photodynamic therapy (aPDT) is hampered by restricted access to bacterial communities embedded within the dense extracellular matrix of mature biofilms. Herein, a versatile photosensitizer nanoplatform (named MagTBO) was designed to overcome this obstacle by integrating toluidine-blue ortho (TBO) photosensitizer and superparamagnetic iron oxide nanoparticles (SPIONs) via a microemulsion method. In this study, we reported the preparation, characterization, and application of MagTBO for aPDT. In the presence of an external magnetic field, the MagTBO microemulsion can be driven and penetrate deep sites inside the biofilms, resulting in an improved photodynamic disinfection effect compared to using TBO alone. Besides, the obtained MagTBO microemulsions revealed excellent water solubility and stability over time, enhanced the aPDT performance against S. mutans and saliva-derived multispecies biofilms, and improved the TBO's biocompatibility. Such results demonstrate a proof-of-principle for using microemulsion as a delivery vehicle and magnetic field as a navigation approach to intensify the antibacterial action of currently available photosensitizers, leading to efficient modulation of pathogenic oral biofilms.
Collapse
Affiliation(s)
- Abdulrahman A Balhaddad
- Dental Biomedical Sciences Ph.D. Program, University of Maryland School of Dentistry, Baltimore, Maryland 21201, United States
- Department of Restorative Dental Sciences, Imam Abdulrahman Bin Faisal University, College of Dentistry, Dammam 31441, Saudi Arabia
| | - Yang Xia
- Biomaterials & Tissue Engineering Division, Dept. of Advanced Oral Sciences and Therapeutics, University of Maryland School of Dentistry, Baltimore, Maryland 21201, United States
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, Jiangsu 210029, China
- Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Yucheng Lan
- Department of Physics and Engineering Physics, Morgan State University, 1700 East Cold Spring Lane, Baltimore, Maryland 21251, United States
| | - Lamia Mokeem
- Dental Biomedical Sciences Ph.D. Program, University of Maryland School of Dentistry, Baltimore, Maryland 21201, United States
| | - Maria S Ibrahim
- Dental Biomedical Sciences Ph.D. Program, University of Maryland School of Dentistry, Baltimore, Maryland 21201, United States
- Department of Preventive Dental Sciences, Imam Abdulrahman Bin Faisal University, College of Dentistry, Dammam 31441, Saudi Arabia
| | - Michael D Weir
- Dental Biomedical Sciences Ph.D. Program, University of Maryland School of Dentistry, Baltimore, Maryland 21201, United States
- Biomaterials & Tissue Engineering Division, Dept. of Advanced Oral Sciences and Therapeutics, University of Maryland School of Dentistry, Baltimore, Maryland 21201, United States
| | - Hockin H K Xu
- Dental Biomedical Sciences Ph.D. Program, University of Maryland School of Dentistry, Baltimore, Maryland 21201, United States
- Biomaterials & Tissue Engineering Division, Dept. of Advanced Oral Sciences and Therapeutics, University of Maryland School of Dentistry, Baltimore, Maryland 21201, United States
| | - Mary Anne S Melo
- Dental Biomedical Sciences Ph.D. Program, University of Maryland School of Dentistry, Baltimore, Maryland 21201, United States
- Division of Operative Dentistry, Dept. of General Dentistry, University of Maryland School of Dentistry, Baltimore, Maryland 21201, United States
| |
Collapse
|