1
|
Chen J, Gao Q, Huang M, Yu K. Application of modern artificial intelligence techniques in the development of organic molecular force fields. Phys Chem Chem Phys 2025; 27:2294-2319. [PMID: 39820957 DOI: 10.1039/d4cp02989e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2025]
Abstract
The molecular force field (FF) determines the accuracy of molecular dynamics (MD) and is one of the major bottlenecks that limits the application of MD in molecular design. Recently, artificial intelligence (AI) techniques, such as machine-learning potentials (MLPs), have been rapidly reshaping the landscape of MD. Meanwhile, organic molecular systems feature unique characteristics, and require more careful treatment in both model construction, optimization, and validation. While an accurate and generic organic molecular force field is still missing, significant progress has been made with the facilitation of AI, warranting a promising future. In this review, we provide an overview of the various types of AI techniques used in molecular FF development and discuss both the advantages and weaknesses of these methodologies. We show how AI methods provide unprecedented capabilities in many tasks such as potential fitting, atom typification, and automatic optimization. Meanwhile, it is also worth noting that more efforts are needed to improve the transferability of the model, develop a more comprehensive database, and establish more standardized validation procedures. With these discussions, we hope to inspire more efforts to solve the existing problems, eventually leading to the birth of next-generation generic organic FFs.
Collapse
Affiliation(s)
- Junmin Chen
- Institute of Materials Research (IMR), Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China.
- Tsinghua-Berkeley Shenzhen Institute (TBSI), Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
| | - Qian Gao
- Institute of Materials Research (IMR), Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China.
| | - Miaofei Huang
- Institute of Materials Research (IMR), Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China.
| | - Kuang Yu
- Institute of Materials Research (IMR), Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China.
- Tsinghua-Berkeley Shenzhen Institute (TBSI), Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
| |
Collapse
|
2
|
Badaczewska-Dawid AE, Kolinski A. Importance of Secondary Structure Data in Large Scale Protein Modeling Using Low-Resolution SURPASS Method. Methods Mol Biol 2025; 2867:55-78. [PMID: 39576575 DOI: 10.1007/978-1-0716-4196-5_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2024]
Abstract
Secondary structure elements, such as alpha helices and beta strands, play a fundamental role in defining the overall fold of a protein. Leveraging secondary structure information is essential for encoding the structural features in coarse-grained protein models. Such models simplify the representation of amino acid residues, thereby reducing computational complexity. By incorporating accurate (even if only partial) secondary structure data, the models can efficiently search for the native conformation of proteins and preserve the core structural motifs across extended time frames. Here, the pivotal role of (predicted) secondary structure data in the coarse-grained modeling of protein tertiary and quaternary structures, along with their long-time dynamics, is investigated. Computational simulations of large protein systems using a low-resolution SURPASS model were performed. These case studies demonstrate the sufficiency of predicted secondary structure data in an accurate fold assembly. It leads to a realistic depiction of long-time dynamics in the recorded pseudo-trajectories by employing the Monte Carlo dynamics sampling schema, based on a long random sequence of local conformational modifications. This approach may provide a powerful tool for investigating the critical stages of protein folding. Future combination with knowledge-based potentials derived using machine learning techniques offers exciting opportunities to unravel the underlying mechanisms of biological processes in a variety of molecular complexes.
Collapse
|
3
|
Lappala A. The next revolution in computational simulations: Harnessing AI and quantum computing in molecular dynamics. Curr Opin Struct Biol 2024; 89:102919. [PMID: 39306949 DOI: 10.1016/j.sbi.2024.102919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 08/20/2024] [Accepted: 08/27/2024] [Indexed: 11/29/2024]
Abstract
The integration of artificial intelligence, machine learning and quantum computing into molecular dynamics simulations is catalyzing a revolution in computational biology, improving the accuracy and efficiency of simulations. This review describes the advancements and applications of these technologies to process vast molecular dynamics simulation datasets, adapt parameters of simulations and gain insight into complex biological processes. These advances include the use of predictive force fields, adaptive algorithms and quantum-assisted methodologies. While the integration of artificial intelligence and quantum computing with MD simulations provides insightful and stimulating improvements to our understanding of molecular mechanisms, it could introduce new issues related to data quality, interpretability of models and computational complexity. Modern multidisciplinary approaches are needed to navigate these challenges and exploit the potential of these emerging technologies for MD simulations of biomolecular systems.
Collapse
Affiliation(s)
- Anna Lappala
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114, USA.
| |
Collapse
|
4
|
Carrer M, Cezar HM, Bore SL, Ledum M, Cascella M. Learning Force Field Parameters from Differentiable Particle-Field Molecular Dynamics. J Chem Inf Model 2024; 64:5510-5520. [PMID: 38963184 PMCID: PMC11267579 DOI: 10.1021/acs.jcim.4c00564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 05/15/2024] [Accepted: 06/12/2024] [Indexed: 07/05/2024]
Abstract
We develop ∂-HylleraasMD (∂-HyMD), a fully end-to-end differentiable molecular dynamics software based on the Hamiltonian hybrid particle-field formalism, and use it to establish a protocol for automated optimization of force field parameters. ∂-HyMD is templated on the recently released HylleraaasMD software, while using the JAX autodiff framework as the main engine for the differentiable dynamics. ∂-HyMD exploits an embarrassingly parallel optimization algorithm by spawning independent simulations, whose trajectories are simultaneously processed by reverse mode automatic differentiation to calculate the gradient of the loss function, which is in turn used for iterative optimization of the force-field parameters. We show that parallel organization facilitates the convergence of the minimization procedure, avoiding the known memory and numerical stability issues of differentiable molecular dynamics approaches. We showcase the effectiveness of our implementation by producing a library of force field parameters for standard phospholipids, with either zwitterionic or anionic heads and with saturated or unsaturated tails. Compared to the all-atom reference, the force field obtained by ∂-HyMD yields better density profiles than the parameters derived from previously utilized gradient-free optimization procedures. Moreover, ∂-HyMD models can predict with good accuracy properties not included in the learning objective, such as lateral pressure profiles, and are transferable to other systems, including triglycerides.
Collapse
Affiliation(s)
- Manuel Carrer
- Hylleraas Centre for Quantum Molecular
Sciences and Department of Chemistry, University
of Oslo, PO Box 1033, Blindern, 0315 Oslo, Norway
| | - Henrique Musseli Cezar
- Hylleraas Centre for Quantum Molecular
Sciences and Department of Chemistry, University
of Oslo, PO Box 1033, Blindern, 0315 Oslo, Norway
| | - Sigbjørn Løland Bore
- Hylleraas Centre for Quantum Molecular
Sciences and Department of Chemistry, University
of Oslo, PO Box 1033, Blindern, 0315 Oslo, Norway
| | - Morten Ledum
- Hylleraas Centre for Quantum Molecular
Sciences and Department of Chemistry, University
of Oslo, PO Box 1033, Blindern, 0315 Oslo, Norway
| | - Michele Cascella
- Hylleraas Centre for Quantum Molecular
Sciences and Department of Chemistry, University
of Oslo, PO Box 1033, Blindern, 0315 Oslo, Norway
| |
Collapse
|
5
|
Greener JG. Differentiable simulation to develop molecular dynamics force fields for disordered proteins. Chem Sci 2024; 15:4897-4909. [PMID: 38550690 PMCID: PMC10966991 DOI: 10.1039/d3sc05230c] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 02/08/2024] [Indexed: 11/11/2024] Open
Abstract
Implicit solvent force fields are computationally efficient but can be unsuitable for running molecular dynamics on disordered proteins. Here I improve the a99SB-disp force field and the GBNeck2 implicit solvent model to better describe disordered proteins. Differentiable molecular simulations with 5 ns trajectories are used to jointly optimise 108 parameters to better match explicit solvent trajectories. Simulations with the improved force field better reproduce the radius of gyration and secondary structure content seen in experiments, whilst showing slightly degraded performance on folded proteins and protein complexes. The force field, called GB99dms, reproduces the results of a small molecule binding study and improves agreement with experiment for the aggregation of amyloid peptides. GB99dms, which can be used in OpenMM, is available at https://github.com/greener-group/GB99dms. This work is the first to show that gradients can be obtained directly from nanosecond-length differentiable simulations of biomolecules and highlights the effectiveness of this approach to training whole force fields to match desired properties.
Collapse
Affiliation(s)
- Joe G Greener
- Medical Research Council Laboratory of Molecular Biology Cambridge CB2 0QH UK
| |
Collapse
|
6
|
Wu Z, Zhou T. Structural Coarse-Graining via Multiobjective Optimization with Differentiable Simulation. J Chem Theory Comput 2024; 20:2605-2617. [PMID: 38483262 DOI: 10.1021/acs.jctc.3c01348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/27/2024]
Abstract
In the realm of multiscale molecular simulations, structure-based coarse-graining is a prominent approach for creating efficient coarse-grained (CG) representations of soft matter systems, such as polymers. This involves optimizing CG interactions by matching static correlation functions of the corresponding degrees of freedom in all-atom (AA) models. Here, we present a versatile method, namely, differentiable coarse-graining (DiffCG), which combines multiobjective optimization and differentiable simulation. The DiffCG approach is capable of constructing robust CG models by iteratively optimizing the effective potentials to simultaneously match multiple target properties. We demonstrate our approach by concurrently optimizing bonded and nonbonded potentials of a CG model of polystyrene (PS) melts. The resulting CG-PS model effectively reproduces both the structural characteristics, such as the equilibrium probability distribution of microscopic degrees of freedom and the thermodynamic pressure of the AA counterpart. More importantly, leveraging the multiobjective optimization capability, we develop a precise and efficient CG model for PS melts that is transferable across a wide range of temperatures, i.e., from 400 to 600 K. It is achieved via optimizing a pairwise potential with nonlinear temperature dependence in the CG model to simultaneously match target data from AA-MD simulations at multiple thermodynamic states. The temperature transferable CG-PS model demonstrates its ability to accurately predict the radial distribution functions and density at different temperatures, including those that are not included in the target thermodynamic states. Our work opens up a promising route for developing accurate and transferable CG models of complex soft-matter systems through multiobjective optimization with differentiable simulation.
Collapse
Affiliation(s)
- Zhenghao Wu
- Department of Chemistry, Xi'an Jiaotong-Liverpool University, Suzhou, Jiangsu 215123, P. R. China
| | - Tianhang Zhou
- College of Carbon Neutrality Future Technology, State Key Laboratory of Heavy Oil Processing, China University of Petroleum (Beijing), Beijing 102249, P. R. China
| |
Collapse
|
7
|
Navarro C, Majewski M, De Fabritiis G. Top-Down Machine Learning of Coarse-Grained Protein Force Fields. J Chem Theory Comput 2023; 19:7518-7526. [PMID: 37874270 PMCID: PMC10777392 DOI: 10.1021/acs.jctc.3c00638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Indexed: 10/25/2023]
Abstract
Developing accurate and efficient coarse-grained representations of proteins is crucial for understanding their folding, function, and interactions over extended time scales. Our methodology involves simulating proteins with molecular dynamics and utilizing the resulting trajectories to train a neural network potential through differentiable trajectory reweighting. Remarkably, this method requires only the native conformation of proteins, eliminating the need for labeled data derived from extensive simulations or memory-intensive end-to-end differentiable simulations. Once trained, the model can be employed to run parallel molecular dynamics simulations and sample folding events for proteins both within and beyond the training distribution, showcasing its extrapolation capabilities. By applying Markov state models, native-like conformations of the simulated proteins can be predicted from the coarse-grained simulations. Owing to its theoretical transferability and ability to use solely experimental static structures as training data, we anticipate that this approach will prove advantageous for developing new protein force fields and further advancing the study of protein dynamics, folding, and interactions.
Collapse
Affiliation(s)
- Carles Navarro
- Acellera
Labs, Doctor Trueta 183, 08005 Barcelona, Spain
| | | | - Gianni De Fabritiis
- Computational
Science Laboratory, Universitat Pompeu Fabra, Barcelona Biomedical Research Park (PRBB), Carrer Dr. Aiguader 88, 08003 Barcelona, Spain
- Acellera
Ltd., Devonshire House
582, Middlesex HA7 1JS, United Kingdom
- Institució
Catalana de Recerca i Estudis Avançats (ICREA), Passeig Lluis Companys 23, 08010 Barcelona, Spain
| |
Collapse
|
8
|
Kandathil SM, Lau AM, Jones DT. Machine learning methods for predicting protein structure from single sequences. Curr Opin Struct Biol 2023; 81:102627. [PMID: 37320955 DOI: 10.1016/j.sbi.2023.102627] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 05/17/2023] [Accepted: 05/17/2023] [Indexed: 06/17/2023]
Abstract
Recent breakthroughs in protein structure prediction have increasingly relied on the use of deep neural networks. These recent methods are notable in that they produce 3-D atomic coordinates as a direct output of the networks, a feature which presents many advantages. Although most techniques of this type make use of multiple sequence alignments as their primary input, a new wave of methods have attempted to use just single sequences as the input. We discuss the make-up and operating principles of these models, and highlight new developments in these areas, as well as areas for future development.
Collapse
Affiliation(s)
- Shaun M Kandathil
- Department of Computer Science, University College London, Gower Street, London, WC1E 6BT, United Kingdom
| | - Andy M Lau
- Department of Computer Science, University College London, Gower Street, London, WC1E 6BT, United Kingdom
| | - David T Jones
- Department of Computer Science, University College London, Gower Street, London, WC1E 6BT, United Kingdom.
| |
Collapse
|
9
|
Ding Y, Yu K, Huang J. Data science techniques in biomolecular force field development. Curr Opin Struct Biol 2023; 78:102502. [PMID: 36462448 DOI: 10.1016/j.sbi.2022.102502] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 10/18/2022] [Accepted: 10/25/2022] [Indexed: 12/03/2022]
Abstract
Recent advances in data science are impacting the development of classical force fields. Here we review some ideas and techniques from data science that have been used in force field development, including database construction, atom typing, and machine learning potentials. We highlight how new tools such as active learning and automatic differentiation are facilitating the generation of target data and the direct fitting with macroscopic observables. Philosophical changes on how force field models should be built and used are also discussed. It's inspiring that more accurate biomolecular force fields can be developed with the aid of data science techniques.
Collapse
Affiliation(s)
- Ye Ding
- Westlake AI Therapeutics Lab, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, 310024, China; Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, 310024, China
| | - Kuang Yu
- Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, Guangdong, 518055, China
| | - Jing Huang
- Westlake AI Therapeutics Lab, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, 310024, China; Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, 310024, China.
| |
Collapse
|
10
|
Wang W, Wu Z, Dietschreit JCB, Gómez-Bombarelli R. Learning pair potentials using differentiable simulations. J Chem Phys 2023; 158:044113. [PMID: 36725529 DOI: 10.1063/5.0126475] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Learning pair interactions from experimental or simulation data is of great interest for molecular simulations. We propose a general stochastic method for learning pair interactions from data using differentiable simulations (DiffSim). DiffSim defines a loss function based on structural observables, such as the radial distribution function, through molecular dynamics (MD) simulations. The interaction potentials are then learned directly by stochastic gradient descent, using backpropagation to calculate the gradient of the structural loss metric with respect to the interaction potential through the MD simulation. This gradient-based method is flexible and can be configured to simulate and optimize multiple systems simultaneously. For example, it is possible to simultaneously learn potentials for different temperatures or for different compositions. We demonstrate the approach by recovering simple pair potentials, such as Lennard-Jones systems, from radial distribution functions. We find that DiffSim can be used to probe a wider functional space of pair potentials compared with traditional methods like iterative Boltzmann inversion. We show that our methods can be used to simultaneously fit potentials for simulations at different compositions and temperatures to improve the transferability of the learned potentials.
Collapse
Affiliation(s)
- Wujie Wang
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, Massachusetts 02139, USA
| | - Zhenghao Wu
- Eduard-Zintl-Institut für Anorganische und Physikalische Chemie, Technische Universität Darmstadt, Alarich-Weiss-Str. 8, 64287 Darmstadt, Germany
| | - Johannes C B Dietschreit
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, Massachusetts 02139, USA
| | - Rafael Gómez-Bombarelli
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, Massachusetts 02139, USA
| |
Collapse
|
11
|
End-to-end differentiable blind tip reconstruction for noisy atomic force microscopy images. Sci Rep 2023; 13:129. [PMID: 36599879 DOI: 10.1038/s41598-022-27057-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 12/23/2022] [Indexed: 01/06/2023] Open
Abstract
Observing the structural dynamics of biomolecules is vital to deepening our understanding of biomolecular functions. High-speed (HS) atomic force microscopy (AFM) is a powerful method to measure biomolecular behavior at near physiological conditions. In the AFM, measured image profiles on a molecular surface are distorted by the tip shape through the interactions between the tip and molecule. Once the tip shape is known, AFM images can be approximately deconvolved to reconstruct the surface geometry of the sample molecule. Thus, knowing the correct tip shape is an important issue in the AFM image analysis. The blind tip reconstruction (BTR) method developed by Villarrubia (J Res Natl Inst Stand Technol 102:425, 1997) is an algorithm that estimates tip shape only from AFM images using mathematical morphology operators. While the BTR works perfectly for noise-free AFM images, the algorithm is susceptible to noise. To overcome this issue, we here propose an alternative BTR method, called end-to-end differentiable BTR, based on a modern machine learning approach. In the method, we introduce a loss function including a regularization term to prevent overfitting to noise, and the tip shape is optimized with automatic differentiation and backpropagations developed in deep learning frameworks. Using noisy pseudo-AFM images of myosin V motor domain as test cases, we show that our end-to-end differentiable BTR is robust against noise in AFM images. The method can also detect a double-tip shape and deconvolve doubled molecular images. Finally, application to real HS-AFM data of myosin V walking on an actin filament shows that the method can reconstruct the accurate surface geometry of actomyosin consistent with the structural model. Our method serves as a general post-processing for reconstructing hidden molecular surfaces from any AFM images. Codes are available at https://github.com/matsunagalab/differentiable_BTR .
Collapse
|
12
|
Nussinov R, Zhang M, Liu Y, Jang H. AlphaFold, Artificial Intelligence (AI), and Allostery. J Phys Chem B 2022; 126:6372-6383. [PMID: 35976160 PMCID: PMC9442638 DOI: 10.1021/acs.jpcb.2c04346] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 08/03/2022] [Indexed: 02/08/2023]
Abstract
AlphaFold has burst into our lives. A powerful algorithm that underscores the strength of biological sequence data and artificial intelligence (AI). AlphaFold has appended projects and research directions. The database it has been creating promises an untold number of applications with vast potential impacts that are still difficult to surmise. AI approaches can revolutionize personalized treatments and usher in better-informed clinical trials. They promise to make giant leaps toward reshaping and revamping drug discovery strategies, selecting and prioritizing combinations of drug targets. Here, we briefly overview AI in structural biology, including in molecular dynamics simulations and prediction of microbiota-human protein-protein interactions. We highlight the advancements accomplished by the deep-learning-powered AlphaFold in protein structure prediction and their powerful impact on the life sciences. At the same time, AlphaFold does not resolve the decades-long protein folding challenge, nor does it identify the folding pathways. The models that AlphaFold provides do not capture conformational mechanisms like frustration and allostery, which are rooted in ensembles, and controlled by their dynamic distributions. Allostery and signaling are properties of populations. AlphaFold also does not generate ensembles of intrinsically disordered proteins and regions, instead describing them by their low structural probabilities. Since AlphaFold generates single ranked structures, rather than conformational ensembles, it cannot elucidate the mechanisms of allosteric activating driver hotspot mutations nor of allosteric drug resistance. However, by capturing key features, deep learning techniques can use the single predicted conformation as the basis for generating a diverse ensemble.
Collapse
Affiliation(s)
- Ruth Nussinov
- Computational
Structural Biology Section, Frederick National
Laboratory for Cancer Research, Frederick, Maryland 21702, United States
- Department
of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Mingzhen Zhang
- Computational
Structural Biology Section, Frederick National
Laboratory for Cancer Research, Frederick, Maryland 21702, United States
| | - Yonglan Liu
- Cancer
Innovation Laboratory, National Cancer Institute, Frederick, Maryland 21702, United States
| | - Hyunbum Jang
- Computational
Structural Biology Section, Frederick National
Laboratory for Cancer Research, Frederick, Maryland 21702, United States
| |
Collapse
|
13
|
Rudden LSP, Hijazi M, Barth P. Deep learning approaches for conformational flexibility and switching properties in protein design. Front Mol Biosci 2022; 9:928534. [PMID: 36032687 PMCID: PMC9399439 DOI: 10.3389/fmolb.2022.928534] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 07/15/2022] [Indexed: 11/30/2022] Open
Abstract
Following the hugely successful application of deep learning methods to protein structure prediction, an increasing number of design methods seek to leverage generative models to design proteins with improved functionality over native proteins or novel structure and function. The inherent flexibility of proteins, from side-chain motion to larger conformational reshuffling, poses a challenge to design methods, where the ideal approach must consider both the spatial and temporal evolution of proteins in the context of their functional capacity. In this review, we highlight existing methods for protein design before discussing how methods at the forefront of deep learning-based design accommodate flexibility and where the field could evolve in the future.
Collapse
Affiliation(s)
- Lucas S. P. Rudden
- Institute of Bioengineering, Swiss Federal Institute of Technology (EPFL), Lausanne, Switzerland
| | | | - Patrick Barth
- Institute of Bioengineering, Swiss Federal Institute of Technology (EPFL), Lausanne, Switzerland
| |
Collapse
|