1
|
Li H, Sui Y, Tao Y, Cao J, Jiang X, Wang B, Du Y. Coupling Habitat Radiomic Analysis with the Diversification of the Tumor ecosystem: Illuminating New Strategy in the Assessment of Postoperative Recurrence of Non-Muscle Invasive Bladder Cancer. Acad Radiol 2025; 32:821-833. [PMID: 39455346 DOI: 10.1016/j.acra.2024.09.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 09/16/2024] [Accepted: 09/16/2024] [Indexed: 10/28/2024]
Abstract
RATIONALE AND OBJECTIVES Non-muscle-invasive bladder cancer (NMIBC) is highly recurrent, with each recurrence potentially progressing to muscle-invasive cancer, affecting patient prognosis. Intratumoral heterogeneity plays a crucial role in NMIBC recurrence. This study investigated a novel habitat-based radiomic analysis for stratifying NMIBC recurrence risk. MATERIALS AND METHODS A retrospective collection of 382 NMIBC patients between 2015 and 2021 from two medical institutions was carried out. Patients' CT images were collected across three phases, with tumor sites delineated within the bladder. Intratumoral habitats were identified using K-means clustering on 19 texture features of the tumor sites, followed by the extraction of 107 radiomic features per habitat with PyRadiomics. These features were integrated into machine learning algorithms to develop a habitat-based model (HBM) for predicting two-year recurrence of NMIBC patients. The clinical and multiphase radiomic models were also constructed for comparison, with the Delong test comparing their diagnostic efficiency. The impact of HMB on patients' recurrence-free survival and the correlation between HBM and tumor-stroma ratio were further analyzed. RESULTS Three distinct habitats were identified within NMIBC. The HBM showed an AUC of 0.932 (95% CI: 0.906 - 0.958) in the training cohort and 0.782 (95% CI: 0.674 - 0.890) in the validation cohort for predicting two-year recurrence. With comparison between different models, The HBM is demonstrated to possess superior diagnostic efficacy to the clinical model (p < 0.001) in the training cohort. However, no significant difference was noted between the multiphase and clinical models (p = 0.130) in the training cohort. The HBM score effectively distinguished the recurrence-free survival of NIMBC patients and demonstrated a significant correlation with the tumor-stroma ratio. CONCLUSIONS Habitat-based radiomics, coupled with machine learning, efficiently predicts NMIBC recurrence. Further research on habitat-based radiomics offers potential improvement in clinical management of NMIBC.
Collapse
Affiliation(s)
- Hong Li
- Department of Radiology, The Second Affiliated Hospital of Soochow University, Suzhou, China (H.L., Y.T.)
| | - Yiqun Sui
- Department of Pathology, The Second Affiliated Hospital of Soochow University, Suzhou, China (Y.S.)
| | - Yongli Tao
- Department of Radiology, The Second Affiliated Hospital of Soochow University, Suzhou, China (H.L., Y.T.)
| | - Jin Cao
- Department of Pathology, Suzhou Kowloon Hospital, Shanghai Jiao Tong University School of Medicine, Suzhou, China (J.C., X.J.)
| | - Xiang Jiang
- Department of Pathology, Suzhou Kowloon Hospital, Shanghai Jiao Tong University School of Medicine, Suzhou, China (J.C., X.J.)
| | - Bo Wang
- Department of Urology, Suzhou Kowloon Hospital, Shanghai Jiao Tong University School of Medicine, Suzhou, China (B.W., Y.D.)
| | - Yiheng Du
- Department of Urology, Suzhou Kowloon Hospital, Shanghai Jiao Tong University School of Medicine, Suzhou, China (B.W., Y.D.).
| |
Collapse
|
2
|
Cao Z, Quazi S, Arora S, Osellame LD, Burvenich IJ, Janes PW, Scott AM. Cancer-associated fibroblasts as therapeutic targets for cancer: advances, challenges, and future prospects. J Biomed Sci 2025; 32:7. [PMID: 39780187 PMCID: PMC11715488 DOI: 10.1186/s12929-024-01099-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 11/09/2024] [Indexed: 01/11/2025] Open
Abstract
Research into cancer treatment has been mainly focused on developing therapies to directly target cancer cells. Over the past decade, extensive studies have revealed critical roles of the tumour microenvironment (TME) in cancer initiation, progression, and drug resistance. Notably, cancer-associated fibroblasts (CAFs) have emerged as one of the primary contributors in shaping TME, creating a favourable environment for cancer development. Many preclinical studies have identified promising targets on CAFs, demonstrating remarkable efficacy of some CAF-targeted treatments in preclinical models. Encouraged by these compelling findings, therapeutic strategies have now advanced into clinical evaluation. We aim to provide a comprehensive review of relevant subjects on CAFs, including CAF-related markers and targets, their multifaceted roles, and current landscape of ongoing clinical trials. This knowledge can guide future research on CAFs and advocate for clinical investigations targeting CAFs.
Collapse
Affiliation(s)
- Zhipeng Cao
- Tumour Targeting Laboratory, Olivia Newton-John Cancer Research Institute, Melbourne, VIC, 3084, Australia.
- School of Cancer Medicine, La Trobe University, Melbourne, VIC, 3086, Australia.
- Department of Molecular Imaging and Therapy, Austin Health, Melbourne, VIC, 3084, Australia.
| | - Sadia Quazi
- Tumour Targeting Laboratory, Olivia Newton-John Cancer Research Institute, Melbourne, VIC, 3084, Australia
- School of Cancer Medicine, La Trobe University, Melbourne, VIC, 3086, Australia
| | - Sakshi Arora
- Tumour Targeting Laboratory, Olivia Newton-John Cancer Research Institute, Melbourne, VIC, 3084, Australia
- School of Cancer Medicine, La Trobe University, Melbourne, VIC, 3086, Australia
| | - Laura D Osellame
- Tumour Targeting Laboratory, Olivia Newton-John Cancer Research Institute, Melbourne, VIC, 3084, Australia
- School of Cancer Medicine, La Trobe University, Melbourne, VIC, 3086, Australia
| | - Ingrid J Burvenich
- Tumour Targeting Laboratory, Olivia Newton-John Cancer Research Institute, Melbourne, VIC, 3084, Australia
- School of Cancer Medicine, La Trobe University, Melbourne, VIC, 3086, Australia
| | - Peter W Janes
- Tumour Targeting Laboratory, Olivia Newton-John Cancer Research Institute, Melbourne, VIC, 3084, Australia
- School of Cancer Medicine, La Trobe University, Melbourne, VIC, 3086, Australia
- Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Melbourne, VIC, 3800, Australia
| | - Andrew M Scott
- Tumour Targeting Laboratory, Olivia Newton-John Cancer Research Institute, Melbourne, VIC, 3084, Australia.
- School of Cancer Medicine, La Trobe University, Melbourne, VIC, 3086, Australia.
- Department of Molecular Imaging and Therapy, Austin Health, Melbourne, VIC, 3084, Australia.
- Department of Medicine, University of Melbourne, Melbourne, VIC, 3010, Australia.
| |
Collapse
|
3
|
Muilwijk T, Baekelandt L, Akand M, Daelemans S, Marien K, Waumans Y, van Dam PJ, Kockx M, Van den Broeck T, Van Cleynenbreugel B, Van der Aa F, Gevaert T, Joniau S. Fibroblast Activation Protein-α and the Immune Landscape: Unraveling T1 Non-muscle-invasive Bladder Cancer Progression. EUR UROL SUPPL 2024; 66:67-74. [PMID: 39044944 PMCID: PMC11263494 DOI: 10.1016/j.euros.2024.06.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/19/2024] [Indexed: 07/25/2024] Open
Abstract
Background and objective The tumor microenvironment (TME) in non-muscle-invasive bladder cancer (NMIBC) plays an important role in the anticancer response. We aimed to identify the prognostic biomarkers in the TME of patients with NMIBC for progression to ≥T2. Methods From our institutional database, 40 patients with T1 high-risk NMIBC who progressed were pair matched for Club Urologico Español de Tratamiento Oncologico (CUETO) progression variables with 80 patients who never progressed despite longer follow-up. Progression was defined as ≥T2 or extravesical disease. Patients were treated at least with bacillus Calmette-Guérin (BCG) induction (five or more of six doses). Immunohistochemical (IHC) markers for the TME were used on tissue at first T1 diagnosis: CD8-PanCK, GZMB-CD8-FOXP3, CD163, PD-L1 SP142/SP263, fibroblast activation protein-α (FAP), and CK5-GATA3. Full tissue slides were annotated digitally. Relative marker area (IHC-positive area/total area) or density (IHC-positive cells per area; n/mm2) was calculated, differentiating between regions of interest (ROIs; T1, Ta, and carcinoma in situ) and between compartments (stromal, epithelial, and combined). Differences in IHC variables were assessed using the t test, for continuous variables using analysis of variance and comparisons of more than two groups using Tukey's test. Conditional logistic regression for progression at 5-yr follow-up was performed with clusters based on pair matching. Key findings and limitations Only FAP expression (increase per 50%) in T1 (odds ratio [OR]: 1.33; 95% confidence interval [CI]: 1.04-1.70) and all ROIs combined (OR: 1.62; 95% CI: 1.14-2.29) correlated significantly with progression. None of the other clinicopathological/IHC variables correlated with progression. Conclusions and clinical implications FAP is a potential prognostic biomarker for progression in high-risk NMIBC. FAP is a marker for cancer-associated fibroblasts and is linked to immunosuppression and neoangiogenesis, which makes future investigation clinically relevant. Patient summary We found that progression of high-risk non-muscle-invasive bladder cancer to muscle-invasive disease is less in patients with lower fibroblast activation protein-α (FAP) expression, which is a marker for cancer-associated fibroblasts.
Collapse
Affiliation(s)
- Tim Muilwijk
- Department of Urology, University Hospitals Leuven, Leuven, Belgium
- Organ Systems, KU Leuven, Leuven, Belgium
| | - Loïc Baekelandt
- Department of Urology, University Hospitals Leuven, Leuven, Belgium
- Organ Systems, KU Leuven, Leuven, Belgium
| | - Murat Akand
- Department of Urology, University Hospitals Leuven, Leuven, Belgium
- Organ Systems, KU Leuven, Leuven, Belgium
| | - Sofie Daelemans
- Pathology – Histology, Imaging and Quantification, CellCarta, Antwerp, Belgium
- Medical Biochemistry, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Antwerp, Belgium
| | - Koen Marien
- Pathology – Histology, Imaging and Quantification, CellCarta, Antwerp, Belgium
| | - Yannick Waumans
- Pathology – Histology, Imaging and Quantification, CellCarta, Antwerp, Belgium
| | - Pieter-Jan van Dam
- Pathology – Histology, Imaging and Quantification, CellCarta, Antwerp, Belgium
| | - Mark Kockx
- Pathology – Histology, Imaging and Quantification, CellCarta, Antwerp, Belgium
| | | | | | - Frank Van der Aa
- Department of Urology, University Hospitals Leuven, Leuven, Belgium
- Organ Systems, KU Leuven, Leuven, Belgium
| | - Thomas Gevaert
- Organ Systems, KU Leuven, Leuven, Belgium
- Department of Pathology, AZ Klina, Brasschaat, Belgium
| | - Steven Joniau
- Department of Urology, University Hospitals Leuven, Leuven, Belgium
- Organ Systems, KU Leuven, Leuven, Belgium
| |
Collapse
|
4
|
Janani M, Poorkhani A, Amiriani T, Donyadideh G, Ahmadi F, Jorjanisorkhankalateh Y, Beheshti-Nia F, Kalaei Z, Roudbaraki M, Soltani M, Khori V, Alizadeh AM. Association of future cancer metastases with fibroblast activation protein-α: a systematic review and meta-analysis. Front Oncol 2024; 14:1339050. [PMID: 38751814 PMCID: PMC11094201 DOI: 10.3389/fonc.2024.1339050] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 04/04/2024] [Indexed: 05/18/2024] Open
Abstract
Introduction Fibroblast activation protein-α (FAP-α) is a vital surface marker of cancer-associated fibroblasts, and its high expression is associated with a higher tumor grade and metastasis. A systematic review and a meta-analysis were performed to associate future metastasis with FAP-α expression in cancer. Methods In our meta-analysis, relevant studies published before 20 February 2024 were systematically searched through online databases that included PubMed, Scopus, and Web of Science. The association between FAP-α expression and metastasis, including distant metastasis, lymph node metastasis, blood vessel invasion, vascular invasion, and neural invasion, was evaluated. A pooled odds ratio (OR) with 95% confidence intervals (CI) was reported as the measure of association. Results A total of 28meta-analysis. The random-effects model for five parameters showed that a high FAP-α expression was associated with blood vessel invasion (OR: 3.04, 95% CI: 1.54-5.99, I 2 = 63%, P = 0.001), lymphovascular invasion (OR: 3.56, 95% CI: 2.14-5.93, I 2 = 0.00%, P < 0.001), lymph node metastasis (OR: 2.73, 95% CI: 1.96-3.81, I 2 = 65%, P < 0.001), and distant metastasis (OR: 2.59; 95% CI: 1.16-5.79, I 2 = 81%, P < 0.001). However, our analysis showed no statistically significant association between high FAP-α expression and neural invasion (OR: 1.57, 95% CI: 0.84-2.93, I 2 = 38%, P = 0.161). Conclusions This meta-analysis indicated that cancer cells with a high FAP-α expression have a higher risk of metastasis than those with a low FAP-α expression. These findings support the potential importance of FAP-α as a biomarker for cancer metastasis prediction.
Collapse
Affiliation(s)
- Majid Janani
- Breast Disease Research Center, Cancer Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Amirhoushang Poorkhani
- Ischemic Disorders Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Taghi Amiriani
- Ischemic Disorders Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Ghazaleh Donyadideh
- Metabolic Syndrome Research Center, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Farahnazsadat Ahmadi
- Ischemic Disorders Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | | | - Fereshteh Beheshti-Nia
- Department of Epidemiology and Biostatistics, School of Public Health, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Zahra Kalaei
- Cancer Research Center, Cancer Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Morad Roudbaraki
- Laboratory of Cell Physiology, Inserm U1003, University of Lille, Villeneuve d’Ascq, France
| | - Mahsa Soltani
- Breast Disease Research Center, Cancer Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Vahid Khori
- Ischemic Disorders Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Ali Mohammad Alizadeh
- Breast Disease Research Center, Cancer Institute, Tehran University of Medical Sciences, Tehran, Iran
- Cancer Research Center, Cancer Institute, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
5
|
Semeniuk-Wojtaś A, Poddębniak-Strama K, Modzelewska M, Baryła M, Dziąg-Dudek E, Syryło T, Górnicka B, Jakieła A, Stec R. Tumour microenvironment as a predictive factor for immunotherapy in non-muscle-invasive bladder cancer. Cancer Immunol Immunother 2023; 72:1971-1989. [PMID: 36928373 PMCID: PMC10264486 DOI: 10.1007/s00262-023-03376-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 01/09/2023] [Indexed: 03/18/2023]
Abstract
Bladder cancer (BC) can be divided into two subgroups depending on invasion of the muscular layer: non-muscle-invasive bladder cancer (NMIBC) and muscle-invasive bladder cancer (MIBC). Its aggressiveness is associated, inter alia, with genetic aberrations like losses of 1p, 6q, 9p, 9q and 13q; gain of 5p; or alterations in the p53 and p16 pathways. Moreover, there are reported metabolic disturbances connected with poor diagnosis-for example, enhanced aerobic glycolysis, gluconeogenesis or haem catabolism.Currently, the primary way of treatment method is transurethral resection of the bladder tumour (TURBT) with adjuvant Bacillus Calmette-Guérin (BCG) therapy for NMIBC or radical cystectomy for MIBC combined with chemotherapy or immunotherapy. However, intravesical BCG immunotherapy and immune checkpoint inhibitors are not efficient in every case, so appropriate biomarkers are needed in order to select the proper treatment options. It seems that the success of immunotherapy depends mainly on the tumour microenvironment (TME), which reflects the molecular disturbances in the tumour. TME consists of specific conditions like hypoxia or local acidosis and different populations of immune cells including tumour-infiltrating lymphocytes, natural killer cells, neutrophils and B lymphocytes, which are responsible for shaping the response against tumour neoantigens and crucial pathways like the PD-L1/PD-1 axis.In this review, we summarise holistically the impact of the immune system, genetic alterations and metabolic changes that are key factors in immunotherapy success. These findings should enable better understanding of the TME complexity in case of NMIBC and causes of failures of current therapies.
Collapse
Affiliation(s)
| | | | | | | | | | - Tomasz Syryło
- Department of General, Active and Oncological Urology, Military Institute of Medicine, Warsaw, Poland
| | - Barbara Górnicka
- Pathomorphology Department, Medical University of Warsaw, Warsaw, Poland
| | - Anna Jakieła
- Oncology Department, 4 Military Clinical Hospital with a Polyclinic, Wroclaw, Poland
| | - Rafał Stec
- Oncology Department, Medical University of Warsaw, Warsaw, Poland
| |
Collapse
|
6
|
Abd El-Azeem MA, Ali MA, El-Shorbagy SH. Expression of GLUT4 and FAP in urothelial bladder carcinoma: correlation with angiogenesis and clinicopathological characteristics. J Egypt Natl Canc Inst 2022; 34:40. [DOI: 10.1186/s43046-022-00145-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 07/27/2022] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Urothelial carcinoma (UC) is the most common type of bladder cancer. Glucose transporter 4 (GLUT4) is one of glucose transporter proteins’ family which facilitates glucose transport inside the cells. It was found to be overexpressed in several malignant tumors. Cancer-associated fibroblasts (CAFs) are heterogeneous stromal cells located adjacent to cancer cells and are considered one of the most important tumor stromal cells. They have been associated with enhancing tumor growth and invasion. GLUT4 expression in malignant epithelial cells and fibroblast activation protein (FAP) expression in CAFs of UC in relation to angiogenesis and clinicopathological characteristics are studied in this work.
Materials and methods
The study was carried out on 72 paraffin blocks of UC (27 radical cystectomies and 45 transurethral resections). Immunohistochemical staining was performed with GLUT4, FAP, and CD34 antibodies. Expression of GLUT4 and FAP was classified according to the staining intensities and percentages into low and high groups. CD34-stained microvessels’ mean count in five microscopic fields (×200) was taken as the microvessel density (MVD).
Results
GLUT4 overexpression was detected in 32 UC. It was significantly associated with high-grade tumors, advanced primary tumor (pT) stage, lymphovascular invasion (LVI), and regional lymph node invasion. High FAP expression was appreciated in 27 UC and was significantly linked to LVI and advanced TNM staging. Intratumor MVD significantly increased in UC with muscle invasion, LVI, and regional lymph node and/or distant metastasis. A significant positive correlation between GLUT4, FAP expression, and MVD was found.
Conclusion
GLUT4 and FAP expression was significantly associated with increased intratumor MVD and adverse clinicopathological factors.
Collapse
|
7
|
De Carlo C, Valeri M, Corbitt DN, Cieri M, Colombo P. Non-muscle invasive bladder cancer biomarkers beyond morphology. Front Oncol 2022; 12:947446. [PMID: 35992775 PMCID: PMC9382689 DOI: 10.3389/fonc.2022.947446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 07/11/2022] [Indexed: 11/13/2022] Open
Abstract
Non-muscle invasive bladder cancer (NMIBC) still represents a challenge in decision-making and clinical management since prognostic and predictive biomarkers of response to treatment are still under investigation. In addition to the risk factors defined by EORTC guidelines, histological features have also been considered key variables able to impact on recurrence and progression in bladder cancer. Conversely, the role of genomic rearrangements or expression of specific proteins at tissue level need further assessment in NMIBC. As with muscle-invasive cancer, NMIBC is a heterogeneous disease, characterized by genomic instability, varying rates of mutation and a wide range of protein tissue expression. In this Review, we summarized the recent evidence on prognostic and predictive tissue biomarkers in NMIBC, beyond morphological parameters, outlining how they could affect tumor biology and consequently its behavior during clinical care. Our aim was to facilitate clinical evaluation of promising biomarkers that may be employed to better stratify patients. We described the most common molecular events and immunohistochemical protein expressions linked to recurrence and progression. Moreover, we discussed the link between available treatments and molecular drivers that could be predictive of clinical response. In conclusion, we foster further investigations with particular focus on immunohistochemical evaluation of tissue biomarkers, a promising and cost-effective tool for daily practice.
Collapse
Affiliation(s)
- Camilla De Carlo
- Department of Pathology, IRCCS Humanitas Research Hospital, Milan, Italy
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
| | - Marina Valeri
- Department of Pathology, IRCCS Humanitas Research Hospital, Milan, Italy
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
| | | | - Miriam Cieri
- Department of Pathology, IRCCS Humanitas Research Hospital, Milan, Italy
| | - Piergiuseppe Colombo
- Department of Pathology, IRCCS Humanitas Research Hospital, Milan, Italy
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
- *Correspondence: Piergiuseppe Colombo,
| |
Collapse
|
8
|
Larrinaga G, Calvete-Candenas J, Solano-Iturri JD, Martín AM, Pueyo A, Nunes-Xavier CE, Pulido R, Dorado JF, López JI, Angulo JC. (Pro)renin Receptor Is a Novel Independent Prognostic Marker in Invasive Urothelial Carcinoma of the Bladder. Cancers (Basel) 2021; 13:cancers13225642. [PMID: 34830803 PMCID: PMC8616163 DOI: 10.3390/cancers13225642] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/05/2021] [Accepted: 11/08/2021] [Indexed: 01/01/2023] Open
Abstract
Simple Summary This is a novel description of (Pro)renin receptor (PRR) protein and its prognostic role in invasive urothelial cancer of the bladder. Using a tissue microarray, we investigated PRR expression and other immunohistochemical markers including p53, immune-checkpoint inhibition, and basal and luminal phenotypes in a series of patients with invasive urothelial carcinoma of the bladder treated with radical cystectomy. PRR expression is an independent prognostic marker and could be a potential target in urothelial carcinoma that should be further investigated. Abstract (Pro)renin receptor (PRR) is being investigated in several malignancies as it activates pathogenic pathways that contribute to cell proliferation, immunosuppressive microenvironments, and acquisition of aggressive neoplastic phenotypes. Its implication in urothelial cancer (UC) has not been evaluated so far. We retrospectively evaluate the prognostic role of PRR expression in a series of patients with invasive UC treated with radical cystectomy and other clinical and histopathological parameters including p53, markers of immune-checkpoint inhibition, and basal and luminal phenotypes evaluated by tissue microarray. Cox regression analyses using stepwise selection evaluated candidate prognostic factors and disease-specific survival. PRR was expressed in 77.3% of the primary tumors and in 70% of positive lymph nodes. PRR expression correlated with age (p = 0.006) and was associated with lower preoperatively hemoglobin levels. No other statistical association was evidenced with clinical and pathological variables (gender, ASA score, Charlson comorbidity index, grade, pT, pN) or immunohistochemical expressions evaluated (CK20, GA-TA3, CK5/6, CD44, PD-L1, PD-1, B7-H3, VISTA, and p53). PRR expression in primary tumors was associated with worse survival (log-rank, p = 0.008). Cox regression revealed that PRR expression (HR 1.85, 95% CI 1.22–2.8), pT (HR 7.02, 95% CI 2.68–18.39), pN (HR 2.3, 95% CI 1.27–4.19), and p53 expression (HR 1.95, 95% CI 1.1–3.45) were independent prognostic factors in this series. In conclusion, we describe PRR protein and its prognostic role in invasive UC for the first time. Likely mechanisms involved are MAPK/ERK activation, Wnt/β-catenin signaling, and v-ATPAse function.
Collapse
Affiliation(s)
- Gorka Larrinaga
- Department of Nursing, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), 48940 Leioa, Spain
- Department of Physiology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), 48940 Leioa, Spain
- Biomarkers in Cancer Unit, Biocruces-Bizkaia Institute, 48903 Barakaldo, Spain; (J.D.S.-I.); (C.E.N.-X.); (R.P.); (J.I.L.)
- Correspondence:
| | | | - Jon Danel Solano-Iturri
- Biomarkers in Cancer Unit, Biocruces-Bizkaia Institute, 48903 Barakaldo, Spain; (J.D.S.-I.); (C.E.N.-X.); (R.P.); (J.I.L.)
- Service of Pathology, Donostia University Hospital, 20014 San Sebastian, Spain
| | - Ana M. Martín
- Service of Pathology, University Hospital of Getafe, 28905 Madrid, Spain;
| | - Angel Pueyo
- Foundation for Biomedical Research and Innovation of University Hospitals Infanta Leonor and South-East, 28003 Madrid, Spain;
- Heath Science PhD Program, UCAM Universidad Católica San Antonio de Murcia, Guadalupe de Maciascoque, 30107 Murcia, Spain
| | - Caroline E. Nunes-Xavier
- Biomarkers in Cancer Unit, Biocruces-Bizkaia Institute, 48903 Barakaldo, Spain; (J.D.S.-I.); (C.E.N.-X.); (R.P.); (J.I.L.)
- Department of Tumor Biology, Institute for Cancer Research, Oslo University Hospital Radiumhospitalet, 0310 Oslo, Norway
| | - Rafael Pulido
- Biomarkers in Cancer Unit, Biocruces-Bizkaia Institute, 48903 Barakaldo, Spain; (J.D.S.-I.); (C.E.N.-X.); (R.P.); (J.I.L.)
- Ikerbasque, The Basque Foundation for Science, 48011 Bilbao, Spain
| | | | - José I. López
- Biomarkers in Cancer Unit, Biocruces-Bizkaia Institute, 48903 Barakaldo, Spain; (J.D.S.-I.); (C.E.N.-X.); (R.P.); (J.I.L.)
- Department of Pathology, Cruces University Hospital, 48903 Barakaldo, Spain
| | - Javier C. Angulo
- Clinical Department, Faculty of Medical Sciences, European University of Madrid, 28005 Madrid, Spain;
- Department of Urology, University Hospital of Getafe, 28907 Madrid, Spain
| |
Collapse
|