1
|
Rashid MHO, Ezzikouri S, Soliman AM, Akter L, Momohara K, Hifumi T, Miyoshi N, Hishiki T, Abdel-Moneim AS, Kohara M, Tsukiyama-Kohara K. Drug repositioning: Identification of potent inhibitors of NS3 protease and NS5 RdRp for control of DENV infection. Biomed Pharmacother 2025; 187:118104. [PMID: 40300391 DOI: 10.1016/j.biopha.2025.118104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2025] [Revised: 04/13/2025] [Accepted: 04/24/2025] [Indexed: 05/01/2025] Open
Abstract
Dengue virus (DENV) threatens global health; specific antiviral drugs are required to combat it. Such anti-DENV therapeutics can be rapidly developed by repositioning the drugs approved for other indications. This study investigated six medications of different classes drawn from a library of molecules. In silico analyses were performed to determine potential binding affinity for the DENV non-structural protein NS3 protease and NS5 RNA-dependent RNA polymerase (RdRp). Of the six candidates, galidesivir and tadalafil showed the highest binding affinities for the DENV NS3 protease and NS5 RdRp, with tadalafil demonstrating the highest binding affinity. Galidesivir and tadalafil substantially suppressed viral replication in DENV replicon cells without inducing cytotoxicity and showed half-maximal inhibitory concentrations of 10 μM and 2.56 μM, respectively. Both galidesivir and tadalafil effectively suppress DENV infection in human hepatoma and baby hamster kidney cells, and tadalafil demonstrates protease-inhibitory activity. In an AG129 mouse model of DENV infection, both galidesivir and tadalafil reduced viral loads in the serum, with tadalafil producing a notable reduction by day four. Both drugs markedly suppressed DENV replication in the hepatic tissue. Histopathologically, both galidesivir- and tadalafil-treated mice showed alleviation of DENV-induced lesions in the spleen and liver, indicating the potential therapeutic effects of these drugs. These findings highlight the potential of repositioning galidesivir and tadalafil as effective anti-DENV therapies with low cytotoxicity, meeting the urgent global need for new therapeutic agents against this pathogen.
Collapse
Affiliation(s)
- Md Haroon Or Rashid
- Transboundary Animal Diseases Centre, Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima, Japan
| | - Sayeh Ezzikouri
- Virology Unit, Viral Hepatitis Laboratory, Institut Pasteur du Maroc, Casablanca, Morocco
| | - Ahmed M Soliman
- Transboundary Animal Diseases Centre, Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima, Japan; Biotechnology department, Animal Health Research Institute, Agricultural Research Center, Dokki, Giza 12618, Egypt
| | - Lipi Akter
- Transboundary Animal Diseases Centre, Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima, Japan
| | - Kenki Momohara
- Transboundary Animal Diseases Centre, Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima, Japan
| | - Tatsuro Hifumi
- Department of Veterinary Histopathology, Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima, Japan
| | - Noriaki Miyoshi
- Department of Veterinary Histopathology, Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima, Japan
| | - Takayuki Hishiki
- Research Center for Drug and Vaccine Development, National Institute of Infectious Diseases, Tokyo, Japan
| | | | - Michinori Kohara
- Department of Microbiology and Cell Biology, The Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Kyoko Tsukiyama-Kohara
- Transboundary Animal Diseases Centre, Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima, Japan.
| |
Collapse
|
2
|
Cordero AMF, Gonzales AA. Using Multiscale Molecular Modeling to Analyze Possible NS2b-NS3 Protease Inhibitors from Philippine Medicinal Plants. Curr Issues Mol Biol 2024; 46:7592-7618. [PMID: 39057092 PMCID: PMC11275823 DOI: 10.3390/cimb46070451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/15/2024] [Accepted: 07/16/2024] [Indexed: 07/28/2024] Open
Abstract
Within the field of Philippine folkloric medicine, the utilization of indigenous plants like Euphorbia hirta (tawa-tawa), Carica papaya (papaya), and Psidium guajava (guava) as potential dengue remedies has gained attention. Yet, limited research exists on their comprehensive effects, particularly their anti-dengue activity. This study screened 2944 phytochemicals from various Philippine plants for anti-dengue activity. Absorption, distribution, metabolism, excretion, and toxicity (ADMET) profiling provided 1265 compounds demonstrating pharmacokinetic profiles suitable for human use. Molecular docking targeting the dengue virus NS2b-NS3 protease's catalytic triad (Asp 75, Ser 135, and His 51) identified ten ligands with higher docking scores than reference compounds idelalisib and nintedanib. Molecular dynamics simulations confirmed the stability of eight of these ligand-protease complexes. Molecular Mechanics/Poisson-Boltzmann Surface Area (MM/PBSA) analysis highlighted six ligands, including veramiline (-80.682 kJ/mol), cyclobranol (-70.943 kJ/mol), chlorogenin (-63.279 kJ/mol), 25beta-Hydroxyverazine (-61.951 kJ/mol), etiolin (-59.923 kJ/mol), and ecliptalbine (-56.932 kJ/mol) with favorable binding energies, high oral bioavailability, and drug-like properties. This integration of traditional medical knowledge with advanced computational drug discovery methods paves new pathways for the development of treatments for dengue.
Collapse
Affiliation(s)
| | - Arthur A. Gonzales
- Department of Chemical Engineering, University of the Philippines Diliman, Quezon City 1101, Philippines;
| |
Collapse
|
3
|
Guan J, Fan Y, Wang S, Zhou F. Functions of MAP3Ks in antiviral immunity. Immunol Res 2023; 71:814-832. [PMID: 37286768 PMCID: PMC10247270 DOI: 10.1007/s12026-023-09401-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 06/01/2023] [Indexed: 06/09/2023]
Abstract
Immune signal transduction is crucial to the body's defense against viral infection. Recognition of pathogen-associated molecular patterns by pattern recognition receptors (PRRs) activates the transcription of interferon regulators and nuclear factor-κB (NF-κB); this promotes the release of interferons and inflammatory factors. Efficient regulation of type I interferon and NF-κB signaling by members of the mitogen-activated protein (MAP) kinase kinase kinase (MAP3K) family plays an important role in antiviral immunity. Elucidating the specific roles of MAP3K activation during viral infection is essential to develop effective antiviral therapies. In this review, we outline the specific regulatory mechanisms of MAP3Ks in antiviral immunity and discuss the feasibility of targeting MAP3Ks for the treatment of virus-induced diseases.
Collapse
Affiliation(s)
- Jizhong Guan
- Institutes of Biology and Medical Science, Soochow University, Suzhou, 215123, China
| | - Yao Fan
- The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518033, China
| | - Shuai Wang
- Institutes of Biology and Medical Science, Soochow University, Suzhou, 215123, China
| | - Fangfang Zhou
- Institutes of Biology and Medical Science, Soochow University, Suzhou, 215123, China.
| |
Collapse
|
4
|
Misra R, Maity A, Kundu S, Bhunia M, Nanda B, Maiti NC, Pal U. Loop Dynamics and Conformational Flexibility in Dengue Serine Protease Activity: Noninvasive Perturbation by Solvent Exchange. J Chem Inf Model 2023; 63:2122-2132. [PMID: 36943246 DOI: 10.1021/acs.jcim.2c01349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2023]
Abstract
Molecular mechanics play an important role in enzyme action and understanding the dynamics of loop motion is key for designing inhibitors of an enzyme, particularly targeting the allosteric sites. For the successful creation of new protease inhibitors targeting the dengue serine protease, our current investigation detailed the intricate structural dynamics of NS2B/NS3 dengue protease. This enzyme is one of the most essential enzymes in the life cycle of the dengue virus, which is responsible for the activation/processing of viral polyprotein, thus making it a potential target for drug discovery. We showed that the internal dynamics of two regions, fingers 1 and 2 (R24-G39 and L149-A164, respectively) adjacent to the active site triad of this protease, control the enzyme action. Each of these regions is composed of two antiparallel β-strands connected by β-turn/hairpin loops. The correlated bending and rocking motions in the two β-turns on either side of the active site were found to modulate the activity of the enzyme to a large extent. With increasing concentration of cosolvent dimethyl sulfoxide, correlated motions in the finger 2 region get diminished and bending of finger 1 increases, which are also reflected in the loss of enzyme activity. Decreasing temperature and mutations in neighboring nonsubstrate binding residues show similar effects on loop motion and enzyme kinetics. Therefore, in vitro noninvasive perturbation of these motions by the solvent exchange as well as cold stress in combination with in silico molecular dynamics simulations established the importance of the two β-turns in the functioning of dengue virus serotype 2 NS2B/NS3 serine protease.
Collapse
Affiliation(s)
- Rajdip Misra
- Structural Biology and Bioinformatics Division, Indian Institute of Chemical Biology, Council of Scientific and Industrial Research, 4, Raja S.C. Mullick Road, Kolkata, West Bengal 700032, India
| | - Anupam Maity
- Structural Biology and Bioinformatics Division, Indian Institute of Chemical Biology, Council of Scientific and Industrial Research, 4, Raja S.C. Mullick Road, Kolkata, West Bengal 700032, India
| | - Shubham Kundu
- Structural Biology and Bioinformatics Division, Indian Institute of Chemical Biology, Council of Scientific and Industrial Research, 4, Raja S.C. Mullick Road, Kolkata, West Bengal 700032, India
| | - Mrinmay Bhunia
- Structural Biology and Bioinformatics Division, Indian Institute of Chemical Biology, Council of Scientific and Industrial Research, 4, Raja S.C. Mullick Road, Kolkata, West Bengal 700032, India
| | - Banadipa Nanda
- Structural Biology and Bioinformatics Division, Indian Institute of Chemical Biology, Council of Scientific and Industrial Research, 4, Raja S.C. Mullick Road, Kolkata, West Bengal 700032, India
| | - Nakul C Maiti
- Structural Biology and Bioinformatics Division, Indian Institute of Chemical Biology, Council of Scientific and Industrial Research, 4, Raja S.C. Mullick Road, Kolkata, West Bengal 700032, India
| | - Uttam Pal
- Structural Biology and Bioinformatics Division, Indian Institute of Chemical Biology, Council of Scientific and Industrial Research, 4, Raja S.C. Mullick Road, Kolkata, West Bengal 700032, India
| |
Collapse
|
5
|
da Costa RA, da Rocha JAP, Pinheiro AS, da Costa ADSS, da Rocha ECM, Silva RC, Gonçalves ADS, Santos CBR, Brasil DDSB. A Computational Approach Applied to the Study of Potential Allosteric Inhibitors Protease NS2B/NS3 from Dengue Virus. Molecules 2022; 27:molecules27134118. [PMID: 35807364 PMCID: PMC9268547 DOI: 10.3390/molecules27134118] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 06/01/2022] [Accepted: 06/02/2022] [Indexed: 12/10/2022] Open
Abstract
Dengue virus (DENV) is a danger to more than 400 million people in the world, and there is no specific treatment. Thus, there is an urgent need to develop an effective method to combat this pathology. NS2B/NS3 protease is an important biological target due it being necessary for viral replication and the fact that it promotes the spread of the infection. Thus, this study aimed to design DENV NS2B/NS3pro allosteric inhibitors from a matrix compound. The search was conducted using the Swiss Similarity tool. The compounds were subjected to molecular docking calculations, molecular dynamics simulations (MD) and free energy calculations. The molecular docking results showed that two compounds, ZINC000001680989 and ZINC000001679427, were promising and performed important hydrogen interactions with the Asn152, Leu149 and Ala164 residues, showing the same interactions obtained in the literature. In the MD, the results indicated that five residues, Lys74, Leu76, Asn152, Leu149 and Ala166, contribute to the stability of the ligand at the allosteric site for all of the simulated systems. Hydrophobic, electrostatic and van der Waals interactions had significant effects on binding affinity. Physicochemical properties, lipophilicity, water solubility, pharmacokinetics, druglikeness and medicinal chemistry were evaluated for four compounds that were more promising, showed negative indices for the potential penetration of the Blood Brain Barrier and expressed high human intestinal absorption, indicating a low risk of central nervous system depression or drowsiness as the the side effects. The compound ZINC000006694490 exhibited an alert with a plausible level of toxicity for the purine base chemical moiety, indicating hepatotoxicity and chromosome damage in vivo in mouse, rat and human organisms. All of the compounds selected in this study showed a synthetic accessibility (SA) score lower than 4, suggesting the ease of new syntheses. The results corroborate with other studies in the literature, and the computational approach used here can contribute to the discovery of new and potent anti-dengue agents.
Collapse
Affiliation(s)
- Renato A. da Costa
- Graduate Program in Science and Environment, Institute of Exact and Natural Sciences, Federal University of Pará (UFPA), Belém 66075-110, PA, Brazil; (A.S.P.); (A.d.S.S.d.C.); (D.d.S.B.B.)
- Federal Institute of Education, Science and Technology of Pará Campus Castanhal, Castanhal 68740-970, PA, Brazil
- Correspondence: ; Tel.: +55-91-985484622
| | - João A. P. da Rocha
- Federal Institute of Education, Science and Technology of Pará—Campus Bragança, Bragança 68600-000, PA, Brazil; (J.A.P.d.R.); (E.C.M.d.R.)
| | - Alan S. Pinheiro
- Graduate Program in Science and Environment, Institute of Exact and Natural Sciences, Federal University of Pará (UFPA), Belém 66075-110, PA, Brazil; (A.S.P.); (A.d.S.S.d.C.); (D.d.S.B.B.)
| | - Andréia do S. S. da Costa
- Graduate Program in Science and Environment, Institute of Exact and Natural Sciences, Federal University of Pará (UFPA), Belém 66075-110, PA, Brazil; (A.S.P.); (A.d.S.S.d.C.); (D.d.S.B.B.)
| | - Elaine C. M. da Rocha
- Federal Institute of Education, Science and Technology of Pará—Campus Bragança, Bragança 68600-000, PA, Brazil; (J.A.P.d.R.); (E.C.M.d.R.)
| | - Rai. C. Silva
- Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto 14040-901, SP, Brazil;
| | - Arlan da S. Gonçalves
- Federal Institute of Education, Science and Technology of Espírito Santo, Vila Velha 29106-010, ES, Brazil;
| | - Cleydson B. R. Santos
- Laboratory of Modeling and Computational Chemistry, Department of Biological and Health Sciences, Federal University of Amapá, Macapá 68902-280, AP, Brazil;
| | - Davi do S. B. Brasil
- Graduate Program in Science and Environment, Institute of Exact and Natural Sciences, Federal University of Pará (UFPA), Belém 66075-110, PA, Brazil; (A.S.P.); (A.d.S.S.d.C.); (D.d.S.B.B.)
| |
Collapse
|