1
|
Zeng X, Sun H. Enhancing the Understanding of Complement Protein Changes in RVO: Insights and Suggestions [Letter]. J Inflamm Res 2025; 18:2781-2782. [PMID: 40026310 PMCID: PMC11871942 DOI: 10.2147/jir.s522685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2025] [Accepted: 02/22/2025] [Indexed: 03/05/2025] Open
Affiliation(s)
- Xuefan Zeng
- Chongqing Medical University, Chongqing, People’s Republic of China
| | - Hao Sun
- Xinqiao Hospital, Chongqing, People’s Republic of China
| |
Collapse
|
2
|
Marto-Costa C, Toffoletto N, Salema-Oom M, Antunes AMM, Pinto CA, Saraiva JA, Silva-Herdade AS, Alvarez-Lorenzo C, Serro AP. Improved triamcinolone acetonide-eluting contact lenses based on cyclodextrins and high hydrostatic pressure assisted complexation. Carbohydr Polym 2024; 331:121880. [PMID: 38388063 DOI: 10.1016/j.carbpol.2024.121880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 01/25/2024] [Accepted: 01/26/2024] [Indexed: 02/24/2024]
Abstract
Contact lenses (CLs) constitute an advantageous platform for the topical release of corticosteroids due to their prolonged contact with the eye. However, the lipophilic nature of corticosteroids hampers CLs' ability to release therapeutic amounts. Two approaches to improve loading and release of triamcinolone acetonide (TA) from poly(2-hydroxyethyl methacrylate)-based hydrogels were investigated: adding 2-hydroxypropyl-β-cyclodextrin (HP-β-CD) to the monomers solution before polymerization (HEMA/i-CD) and an hydrogels' post-treatment with HP-β-CD (HEMA/p-CD). The effect of HP-β-CD and sterilization by high hydrostatic pressure (HHP) on the hydrogel properties (water content, oxygen and ion permeability, roughness, transmittance, and stiffness) was evaluated. The HEMA/i-CD hydrogels had stronger affinity for TA, sustaining its release for one day. HHP sterilization promoted the formation of cyclodextrin-TA complexes within the hydrogels, improving their drug-loading capacity »60 %. Cytotoxicity and irritability tests confirmed the safety of the therapeutic CLs. TA released from the hydrogels permeated through ocular tissues ex vivo and showed anti-inflammatory activity. Finally, a previously validated mathematical model was used to estimate the ability of the TA-loaded CLs to deliver therapeutic drug concentrations to the posterior part of the eye. Overall, HP-β-CD-containing CLs are promising candidates for the topical ocular application of TA as an alternative delivery system to intraocular injections.
Collapse
Affiliation(s)
- Carolina Marto-Costa
- Centro de Química Estrutural (CQE) - Institute of Molecular Sciences and Chemical Engineering Department, Instituto Superior Técnico - University of Lisbon, Av. Rovisco Pais, 1049-001 Lisboa, Portugal; Egas Moniz Center for Interdisciplinary Research (CiiEM), Egas Moniz School of Health & Science, Campus Universitário, Quinta da Granja, 2829-511 Monte da Caparica, Almada, Portugal.
| | - Nadia Toffoletto
- Centro de Química Estrutural (CQE) - Institute of Molecular Sciences and Chemical Engineering Department, Instituto Superior Técnico - University of Lisbon, Av. Rovisco Pais, 1049-001 Lisboa, Portugal; Egas Moniz Center for Interdisciplinary Research (CiiEM), Egas Moniz School of Health & Science, Campus Universitário, Quinta da Granja, 2829-511 Monte da Caparica, Almada, Portugal.
| | - Madalena Salema-Oom
- Egas Moniz Center for Interdisciplinary Research (CiiEM), Egas Moniz School of Health & Science, Campus Universitário, Quinta da Granja, 2829-511 Monte da Caparica, Almada, Portugal.
| | - Alexandra M M Antunes
- Centro de Química Estrutural (CQE) - Institute of Molecular Sciences and Chemical Engineering Department, Instituto Superior Técnico - University of Lisbon, Av. Rovisco Pais, 1049-001 Lisboa, Portugal.
| | - Carlos A Pinto
- LAQV-REQUIMTE, Chemical Engineering Department, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal.
| | - Jorge A Saraiva
- LAQV-REQUIMTE, Chemical Engineering Department, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal.
| | - Ana S Silva-Herdade
- Instituto de Bioquímica, Instituto de Medicina Molecular, Faculdade de Medicina - University of Lisbon, Av. Prof. Egas Moniz, 1649-028 Lisboa, Portugal.
| | - Carmen Alvarez-Lorenzo
- Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, I+DFarma (GI-1645), Facultad de Farmacia, Instituto de Materiales (iMATUS) and Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain.
| | - Ana Paula Serro
- Centro de Química Estrutural (CQE) - Institute of Molecular Sciences and Chemical Engineering Department, Instituto Superior Técnico - University of Lisbon, Av. Rovisco Pais, 1049-001 Lisboa, Portugal; Egas Moniz Center for Interdisciplinary Research (CiiEM), Egas Moniz School of Health & Science, Campus Universitário, Quinta da Granja, 2829-511 Monte da Caparica, Almada, Portugal.
| |
Collapse
|
3
|
Salvetat ML, Pellegrini F, Spadea L, Salati C, Musa M, Gagliano C, Zeppieri M. The Treatment of Diabetic Retinal Edema with Intravitreal Steroids: How and When. J Clin Med 2024; 13:1327. [PMID: 38592149 PMCID: PMC10932454 DOI: 10.3390/jcm13051327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 02/13/2024] [Accepted: 02/21/2024] [Indexed: 04/10/2024] Open
Abstract
Diabetic macular edema (DME) is a common complication of diabetes mellitus and a leading cause of visual impairment worldwide. It is defined as the diabetes-related accumulation of fluid, proteins, and lipids, with retinal thickening, within the macular area. DME affects a significant proportion of individuals with diabetes, with the prevalence increasing with disease duration and severity. It is estimated that approximately 25-30% of diabetic patients will develop DME during their lifetime. Poor glycemic control, hypertension, hyperlipidemia, diabetes duration, and genetic predisposition are recognized as risk factors for the development and progression of DME. Although the exact pathophysiology is still not completely understood, it has been demonstrated that chronic hyperglycemia triggers a cascade of biochemical processes, including increased oxidative stress, inflammation, activation of vascular endothelial growth factor (VEGF), cellular dysfunction, and apoptosis, with breakdown of the blood-retinal barriers and fluid accumulation within the macular area. Early diagnosis and appropriate management of DME are crucial for improving visual outcomes. Although the control of systemic risk factors still remains the most important strategy in DME treatment, intravitreal pharmacotherapy with anti-VEGF molecules or steroids is currently considered the first-line approach in DME patients, whereas macular laser photocoagulation and pars plana vitrectomy may be useful in selected cases. Available intravitreal steroids, including triamcinolone acetonide injections and dexamethasone and fluocinolone acetonide implants, exert their therapeutic effect by reducing inflammation, inhibiting VEGF expression, stabilizing the blood-retinal barrier and thus reducing vascular permeability. They have been demonstrated to be effective in reducing macular edema and improving visual outcomes in DME patients but are associated with a high risk of intraocular pressure elevation and cataract development, so their use requires an accurate patient selection. This manuscript aims to provide a comprehensive overview of the pathology, epidemiology, risk factors, physiopathology, clinical features, treatment mechanisms of actions, treatment options, prognosis, and ongoing clinical studies related to the treatment of DME, with particular consideration of intravitreal steroids therapy.
Collapse
Affiliation(s)
- Maria Letizia Salvetat
- Department of Ophthalmology, Azienda Sanitaria Friuli Occidentale, 33170 Pordenone, Italy; (M.L.S.)
| | - Francesco Pellegrini
- Department of Ophthalmology, Azienda Sanitaria Friuli Occidentale, 33170 Pordenone, Italy; (M.L.S.)
| | - Leopoldo Spadea
- Eye Clinic, Policlinico Umberto I, “Sapienza” University of Rome, 00142 Rome, Italy
| | - Carlo Salati
- Department of Ophthalmology, University Hospital of Udine, 33100 Udine, Italy
| | - Mutali Musa
- Department of Optometry, University of Benin, Benin City 300238, Edo State, Nigeria
| | - Caterina Gagliano
- Faculty of Medicine and Surgery, University of Enna “Kore”, Piazza dell’Università, 94100 Enna, Italy
- Eye Clinic, Catania University, San Marco Hospital, Viale Carlo Azeglio Ciampi, 95121 Catania, Italy
| | - Marco Zeppieri
- Department of Ophthalmology, University Hospital of Udine, 33100 Udine, Italy
| |
Collapse
|
4
|
Tobimatsu Y, Ogihara R, Endo N, Hirose A, Takeda R, Babazono T, Kitano S. Comparison of the Effect of Bromfenac versus Betamethasone Ophthalmic Solutions in Patients with Diabetic Macular Edema. Curr Eye Res 2023; 48:80-85. [PMID: 36331099 DOI: 10.1080/02713683.2022.2140438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
PURPOSE To examine the effect of 0.1% bromfenac (BF) ophthalmic solution and 0.1% betamethasone (BM) ophthalmic solution on diabetic macular edema (DME). METHODS This was a prospective trial. Nineteen patients (mean age of 66.6 ± 10.1 years) with DME and mean retinal thickness within a diameter of 1 mm from the fovea (central subfield thickness: CST) of 250-500 µm were randomized and instilled with BF or BM. CST, best-corrected visual acuity (BCVA), and intraocular pressure (IOP) were measured at 4, 8, and 12 weeks after administration. RESULTS CST at baseline (p = .128) and that at 4, 8, and 12 weeks of administration was not significantly different between the BF (10 patients) and BM groups (9 patients). In patients with glycated hemoglobin (HbA1c) <8.0%, CST, compared with baseline, was significantly decreased in the BF group (seven patients) at 8 (p = .025) and 12 weeks (p = .043) of administration. When compared with the baseline, no significant changes in BCVA were observed at any point in time in either group. Baseline IOP was comparable between the groups. In the BM group, the values of change in IOP from baseline significantly increased at 8 (p = .025) and 12 weeks (p = .044) of administration, with no significant changes in IOP over the 12 weeks of administration in the BF group. CONCLUSIONS BF did not affect IOP even after 12 weeks of administration, suggesting its effect in reducing CST in DME with good glycemic control. TRIAL REGISTRATION University Hospital Medical Information Network (UMIN-CTR); UMIN000026201, February 18, 2017; Japan Registry of Clinical Trials; jRCTs031180308, March 15, 2019.
Collapse
Affiliation(s)
- Yui Tobimatsu
- Diabetes Center, Tokyo Women's Medical University Hospital, Tokyo, Japan
| | - Rie Ogihara
- Diabetes Center, Tokyo Women's Medical University Hospital, Tokyo, Japan
| | - Naoko Endo
- Diabetes Center, Tokyo Women's Medical University Hospital, Tokyo, Japan
| | - Akira Hirose
- Minami Diabetes Clinical Research Center, Fukuoka, Japan
| | - Ryuji Takeda
- Kansai University of Welfare Sciences, Osaka, Japan
| | - Tetsuya Babazono
- Diabetes Center, Tokyo Women's Medical University Hospital, Tokyo, Japan
| | - Shigehiko Kitano
- Diabetes Center, Tokyo Women's Medical University Hospital, Tokyo, Japan
| |
Collapse
|