1
|
Zhao X, Guo J, Lu Y, Sun T, Tian J, Huang J, Xu H, Wang Z, Lu Z. Reference Genes for Expression Analysis Using RT-qPCR in Cnaphalocrocis medinalis (Lepidoptera: Pyralidae). INSECTS 2022; 13:insects13111046. [PMID: 36421949 PMCID: PMC9697642 DOI: 10.3390/insects13111046] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/09/2022] [Accepted: 11/11/2022] [Indexed: 05/31/2023]
Abstract
Cnaphalocrocis medinalis is a destructive migratory rice pest. Although many studies have investigated its behavioral and physiological responses to environmental changes and migration-inducing factors, little is known about its molecular mechanisms. This study was conducted to select suitable RT-qPCR reference genes to facilitate future gene expression studies. Here, thirteen candidate housekeeping genes (EF1α, AK, EF1β, GAPDH, PGK, RPL13, RPL18, RPS3, 18S rRNA, TBP1, TBP2, ACT, and UCCR) were selected to evaluate their stabilities under different conditions using the ∆CT method; the geNorm, NormFinder, BestKeeper algorithms; and the online tool RefFinder. The results showed that the most stable reference genes were EF1β, PGK, and RPL18, related to developmental stages; RPS3 and RPL18 in larval tissues; EF1β and PGK in larvae feeding on different rice varieties; EF1α, EF1β, and PGK in larvae temperature treatments; PGK and RPL13, related to different adult ages; PGK, EF1α, and ACT, related to adult nutritional conditions; RPL18 and PGK, related to adult mating status; and, RPS3 and PGK, related to different adult take-off characteristics. Our results reveal reference genes that apply to various experimental conditions and will greatly improve the reliability of RT-qPCR analysis for the further study of gene function in this pest.
Collapse
Affiliation(s)
- Xiaoyu Zhao
- College of Life Sciences, China Jiliang University, Hangzhou 310018, China
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Jiawen Guo
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Yanhui Lu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Tianyi Sun
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Junce Tian
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Jianlei Huang
- College of Agriculture and Forestry, Hebei North University, Zhangjiakou 075000, China
| | - Hongxing Xu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Zhengliang Wang
- College of Life Sciences, China Jiliang University, Hangzhou 310018, China
| | - Zhongxian Lu
- College of Life Sciences, China Jiliang University, Hangzhou 310018, China
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| |
Collapse
|
2
|
Shen CH, Peng LJ, Zhang YX, Zeng HR, Yu HF, Jin L, Li GQ. Reference Genes for Expression Analyses by qRT-PCR in Phthorimaea operculella (Lepidoptera: Gelechiidae). INSECTS 2022; 13:insects13020140. [PMID: 35206714 PMCID: PMC8879603 DOI: 10.3390/insects13020140] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 01/24/2022] [Accepted: 01/26/2022] [Indexed: 12/04/2022]
Abstract
Due to a lack of effective internal references, studies on functional genes in Phthorimaea operculella, a serious Lepidopteran pest attacking potatoes worldwide, have been greatly limited. To select suitable endogenous controls, ten housekeeping genes of actin (ACT), α-tubulin (α-TUB), glyceraldehyde-3-phosphate dehydrogenase (GAPDH), elongation factor 1α (EF1α), 18S and 28S ribosomal RNA (18S, 28S), ribosomal protein genes RPL4, RPL13 and RPL27 and superoxide dismutase (SOD) were tested. Their expression levels were determined under three different experimental conditions (developmental stages, tissues/organs and temperatures) using qRT-PCR technology. The stability was evaluated with five methods (Ct value, geNorm, NormFinder, BestKeeper and RefFinder). The results clarified that RPL13, EF1α and RPL27 are ranked as the best reference gene combination for measuring gene expression levels among different developing stages and under various temperatures; EF1α and RPL13 are recommended to normalize the gene expression levels among diverse tissues. EF1α and RPL13 are the best reference genes in all the experimental conditions. To validate the utility of the selected reference pair, EF1α and RPL13, we estimated the tissue-biased expression level of chitin synthase A gene (PoChSA). As expected, PoChSA was abundantly expressed in ectodermally derived epidermal cells, and lowly transcribed in the midgut. These findings will lay the foundation for future research on the molecular physiology and biochemistry of P. operculella.
Collapse
Affiliation(s)
| | | | | | | | | | - Lin Jin
- Correspondence: ; Tel.: +86-25-84395248
| | | |
Collapse
|