1
|
Mohsin Mohsen N, Aziz MA, Thangaraja K, Mohammad Nasir MA, Md Zoqratt MZH, Bhassu S, Othman RY. A survey on the occurrence of papaya ringspot virus-P (PRSV-P) in Malaysia and genetic diversity assessment of the coat protein region. ENVIRONMENTAL MONITORING AND ASSESSMENT 2024; 196:1154. [PMID: 39495404 DOI: 10.1007/s10661-024-13321-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 10/25/2024] [Indexed: 11/05/2024]
Abstract
Papaya ringspot virus (PRSV) is a plant virus transmitted by aphids that has spread throughout many countries, including Malaysia, causing yield losses and economic impacts to the papaya industry worldwide. PRSV infection in papaya-distinctive ring-shaped patterns on papaya leaves resulted in stunted growth and reduced fruit quality. Management strategies such as the use of resistant varieties, cultural practices, and vector control are employed to mitigate the spread of PRSV. However, the evolution of new virus strains and the uncertainties posed by climate change pose ongoing challenges for the management of PRSV worldwide. Therefore, in this present study, we aim to confirm the presence of PRSV in symptomatic papaya leaves, to depict the current status of PRSV in Malaysia. Using reverse-transcription PCR (RT-PCR) targeting PRSV partial nuclear inclusion b protein (NIb) and coat protein (CP), 13 out of 40 papaya leaves collected were found positive for the PRSV strain-P (PRSV-P). Nucleotide analysis revealed a high similarity with strains from Taiwan and India, showing 96.83%, 97.03%, and 97.03% identity with the Taiwan strains (DQ340771, AY027810) and the India strain (KJ755852), respectively. Compared to the CP gene of Malaysian isolates reported in 2016 (EU082207), several nonsynonymous mutations have been discovered suggesting genetic diversity within the PRSV population in Malaysia. Overall, this study confirms the current circulation of PRSV infection in Malaysia since it was first identified in Johore in 1991. The re-occurrence of PRSV-P in this study highlights the need for continuous monitoring and targeted management strategies to prevent the further spread of PRSV-P in Malaysia.
Collapse
Affiliation(s)
- Norazyani Mohsin Mohsen
- Institute of Biological Sciences, Faculty of Science, Universiti Malaya, 50603, Kuala Lumpur, Malaysia
| | - Muhamad Afiq Aziz
- Institute of Biological Sciences, Faculty of Science, Universiti Malaya, 50603, Kuala Lumpur, Malaysia.
| | - Kuganisha Thangaraja
- Institute of Biological Sciences, Faculty of Science, Universiti Malaya, 50603, Kuala Lumpur, Malaysia
| | | | | | - Subha Bhassu
- Institute of Biological Sciences, Faculty of Science, Universiti Malaya, 50603, Kuala Lumpur, Malaysia
| | | |
Collapse
|
2
|
Yang MZ, Hao ZG, Ren ZT, Tang R, Wu QH, Zhou LY, Hu YJ, Guo JY, Chen Y, Guo YL, Liu B, Liu LP, Xue K, Jia RZ. Genetic Variability and Evolutionary Dynamics of Papaya Ringspot Virus and Papaya Leaf Distortion Mosaic Virus Infecting Feral Papaya in Hainan Island. PHYTOPATHOLOGY 2024; 114:2442-2452. [PMID: 39244657 DOI: 10.1094/phyto-01-24-0022-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/10/2024]
Abstract
Commercialized genetically modified (GM) papaya cultivars have protected papaya from the devastating disease caused by papaya ringspot virus (PRSV). However, papaya leaf distortion mosaic virus (PLDMV), which causes similar infection symptoms but is serologically distinct from PRSV, was found to be a competitive threat to the papaya industry. Our study surveyed the occurrence of PRSV and PLDMV, as well as the transgenic markers of the 35S promoter from cauliflower mosaic virus and the neomycin phosphotransferase II gene in feral papaya plants, which were found frequently growing outside of cultivated papaya fields on Hainan Island. In total, 123 feral papayas, comprising 62 (50.4%) GM plants and 61 (49.6%) non-GM ones, were sampled. Among them, 23 (18.7%) were positive for PRSV, 49 (39.8%) were positive for PLDMV (including five plants co-infected by PRSV and PLDMV), and 56 (45.5%) were free of either virus. In traditional papaya-growing regions, we detected fewer PRSV-infected plants (2 in 33, 6%) than in other regions (21 in 90, 23%). However, overall, whether plants were transgenic or not made no difference to PRSV incidence (P = 0.230), with 9 PRSV-infected plants among 62 GM papayas and 14 among 61 non-GM papayas. Phylogenetic and genetic differentiation analysis showed a clear correlation between PRSV and PLDMV populations and their geographic origins. Negative selection was estimated for the selected gene regions of both viruses. Notably, PLDMV has deviated from neutral evolution and experienced population expansion, exhibiting increased genetic diversity, and is becoming the predominant threat to papaya in Hainan.
Collapse
Affiliation(s)
- Mu-Zhi Yang
- College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China
- Sanya Research Institution/Hainan Key Laboratory for Biosafety Monitoring and Molecular Breeding in Off-Season Reproduction Regions, Chinese Academy of Tropical Agriculture Sciences, Sanya 572011, China
| | - Zhi-Gang Hao
- Sanya Research Institution/Hainan Key Laboratory for Biosafety Monitoring and Molecular Breeding in Off-Season Reproduction Regions, Chinese Academy of Tropical Agriculture Sciences, Sanya 572011, China
| | - Zhen-Tao Ren
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210000, China
| | - Rui Tang
- Sanya Research Institution/Hainan Key Laboratory for Biosafety Monitoring and Molecular Breeding in Off-Season Reproduction Regions, Chinese Academy of Tropical Agriculture Sciences, Sanya 572011, China
| | - Qing-Hua Wu
- Sanya Research Institution/Hainan Key Laboratory for Biosafety Monitoring and Molecular Breeding in Off-Season Reproduction Regions, Chinese Academy of Tropical Agriculture Sciences, Sanya 572011, China
| | - Li-Ying Zhou
- Sanya Research Institution/Hainan Key Laboratory for Biosafety Monitoring and Molecular Breeding in Off-Season Reproduction Regions, Chinese Academy of Tropical Agriculture Sciences, Sanya 572011, China
| | - Yu-Juan Hu
- Sanya Research Institution/Hainan Key Laboratory for Biosafety Monitoring and Molecular Breeding in Off-Season Reproduction Regions, Chinese Academy of Tropical Agriculture Sciences, Sanya 572011, China
| | - Jing-Yuan Guo
- Sanya Research Institution/Hainan Key Laboratory for Biosafety Monitoring and Molecular Breeding in Off-Season Reproduction Regions, Chinese Academy of Tropical Agriculture Sciences, Sanya 572011, China
| | - Yi Chen
- Sanya Research Institution/Hainan Key Laboratory for Biosafety Monitoring and Molecular Breeding in Off-Season Reproduction Regions, Chinese Academy of Tropical Agriculture Sciences, Sanya 572011, China
| | - Yun-Ling Guo
- Sanya Research Institution/Hainan Key Laboratory for Biosafety Monitoring and Molecular Breeding in Off-Season Reproduction Regions, Chinese Academy of Tropical Agriculture Sciences, Sanya 572011, China
| | - Biao Liu
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210000, China
| | - Lai-Pan Liu
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210000, China
| | - Kun Xue
- College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China
| | - Rui-Zong Jia
- Sanya Research Institution/Hainan Key Laboratory for Biosafety Monitoring and Molecular Breeding in Off-Season Reproduction Regions, Chinese Academy of Tropical Agriculture Sciences, Sanya 572011, China
| |
Collapse
|
3
|
Premchand U, Mesta RK, Devappa V, Basavarajappa MP, Venkataravanappa V, Narasimha Reddy LRC, Shankarappa KS. Survey, Detection, Characterization of Papaya Ringspot Virus from Southern India and Management of Papaya Ringspot Disease. Pathogens 2023; 12:824. [PMID: 37375514 DOI: 10.3390/pathogens12060824] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 05/29/2023] [Accepted: 06/06/2023] [Indexed: 06/29/2023] Open
Abstract
Papaya ringspot virus (PRSV) is a significant threat to global papaya cultivation, causing ringspot disease, and it belongs to the species Papaya ringspot virus, genus Potyvirus, and family Potyviridae. This study aimed to assess the occurrence and severity of papaya ringspot disease (PRSD) in major papaya-growing districts of Karnataka, India, from 2019 to 2021. The incidence of disease in the surveyed districts ranged from 50.5 to 100.0 percent, exhibiting typical PRSV symptoms. 74 PRSV infected samples were tested using specific primers in RT-PCR, confirming the presence of the virus. The complete genome sequence of a representative isolate (PRSV-BGK: OL677454) was determined, showing the highest nucleotide identity (nt) (95.8%) with the PRSV-HYD (KP743981) isolate from Telangana, India. It also shared an amino acid (aa) identity (96.5%) with the PRSV-Pune VC (MF405299) isolate from Maharashtra, India. Based on phylogenetic and species demarcation criteria, the PRSV-BGK isolate was considered a variant of the reported species and designated as PRSV-[IN:Kar:Bgk:Pap:21]. Furthermore, recombination analysis revealed four unique recombination breakpoint events in the genomic region, except for the region from HC-Pro to VPg, which is highly conserved. Interestingly, more recombination events were detected within the first 1710 nt, suggesting that the 5' UTR and P1 regions play an essential role in shaping the PRSV genome. To manage PRSD, a field experiment was conducted over two seasons, testing various treatments, including insecticides, biorationals, and a seaweed extract with micronutrients, alone or in combination. The best treatment involved eight sprays of insecticides and micronutrients at 30-day intervals, resulting in no PRSD incidence up to 180 days after transplanting (DAT). This treatment also exhibited superior growth, yield, and yield parameters, with the highest cost-benefit ratio (1:3.54) and net return. Furthermore, a module comprising 12 sprays of insecticides and micronutrients at 20-day intervals proved to be the most effective in reducing disease incidence and enhancing plant growth, flowering, and fruiting attributes, resulting in a maximized yield of 192.56 t/ha.
Collapse
Affiliation(s)
- Udavatha Premchand
- Department of Plant Pathology, College of Horticulture, University of Horticultural Sciences, Bagalkot 587104, India
| | - Raghavendra K Mesta
- Department of Plant Pathology, College of Horticulture, University of Horticultural Sciences, Bagalkot 587104, India
| | - Venkatappa Devappa
- Department of Plant Pathology, College of Horticulture, University of Horticultural Sciences, Bagalkot 587104, India
| | | | | | | | | |
Collapse
|
4
|
Moya-Ruiz CD, Gómez P, Juárez M. Occurrence, Distribution, and Management of Aphid-Transmitted Viruses in Cucurbits in Spain. Pathogens 2023; 12:422. [PMID: 36986344 PMCID: PMC10057868 DOI: 10.3390/pathogens12030422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 02/27/2023] [Accepted: 03/01/2023] [Indexed: 03/10/2023] Open
Abstract
The effectiveness of pest and disease management in crops relies on knowledge about their presence and distribution in crop-producing areas. Aphids and whiteflies are among the main threats to vegetable crops since these hemipterans feed on plants, causing severe damage, and are also able to transmit a large number of devastating plant viral diseases. In particular, the widespread occurrence of aphid-transmitted viruses in cucurbit crops, along with the lack of effective control measures, makes surveillance programs and virus epidemiology necessary for providing sound advice and further integration into the management strategies that can ensure sustainable food production. This review describes the current presence and distribution of aphid-transmitted viruses in cucurbits in Spain, providing valuable epidemiological information, including symptom expressions of virus-infected plants for further surveillance and viral detection. We also provide an overview of the current measures for virus infection prevention and control strategies in cucurbits and indicate the need for further research and innovative strategies against aphid pests and their associated viral diseases.
Collapse
Affiliation(s)
- Celia De Moya-Ruiz
- Centro de Edafología y Biología Aplicada del Segura (CEBAS), CSIC, Departamento de Biología del Estrés y Patología Vegetal, 30100 Murcia, Spain
| | - Pedro Gómez
- Centro de Edafología y Biología Aplicada del Segura (CEBAS), CSIC, Departamento de Biología del Estrés y Patología Vegetal, 30100 Murcia, Spain
| | - Miguel Juárez
- Centro de Investigación e Innovación Agroalimentaria y Agroambiental (CIAGRO), Universidad Miguel Hernández de Elche, 03312 Orihuela, Spain
| |
Collapse
|
5
|
Tran TTY, Cheng HW, Nguyen VH, Yeh SD. Modification of the Helper Component Proteinase of Papaya Ringspot Virus Vietnam Isolate to Generate Attenuated Mutants for Disease Management by Cross Protection. PHYTOPATHOLOGY 2023; 113:334-344. [PMID: 36129763 DOI: 10.1094/phyto-05-22-0168-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Papaya (Carica papaya) production is seriously limited by papaya ringspot virus (PRSV) worldwide, including in Vietnam. Control of PRSV by cross protection is dependent on the availability of effective mild strains. Here, an infectious cDNA clone was constructed from PRSV isolate TG5 from South Vietnam. Site-directed mutagenesis with point mutations on the essential motifs of the helper component proteinase (HC-Pro) was performed, with or without deleting five amino acids (d5) from its N-terminal region. Mutants TG-d5, TG-d5I7, and TG-d5L206 containing d5, d5 + F7I, and d5 + F206L, respectively, induced mild mottling followed by symptomless recovery on papaya and infected Chenopodium quinoa without lesion formation. Each mutant accumulated in papaya at reduced levels with a zigzag pattern and was stable beyond six monthly passages. The cross-protection effectiveness of the three mutants in papaya against TG5 was investigated, each with 60 plants from three independent trials. The results showed that each mutant provided complete protection (100%) against TG5, 1 month after the challenge inoculation, as verified by the lack of severe symptoms and lack of local lesions in C. quinoa. Further tests revealed that TG-d5I7 also confers high levels of protection against other severe PRSV isolates from South Vietnam, including isolates DN (97%) and ST2 (50%). However, TG-d5I7 is ineffective or less effective (0 to 33%) against seven other severe PRSV strains from different geographic origins, including the isolate HN from North Vietnam. Our results indicate that the protection by the three mutants is highly strain-specific and suitable for the control of PRSV in South Vietnam.
Collapse
Affiliation(s)
- Thi-Thu-Yen Tran
- Department of Plant Pathology, National Chung Hsing University, Taichung, Taiwan, R.O.C
- Southern Horticultural Research Institute, Tiengiang, Vietnam
| | - Hao-Wen Cheng
- Advanced Plant Biotechnology Center, National Chung Hsing University, Taichung, Taiwan, R.O.C
| | - Van-Hoa Nguyen
- Southern Horticultural Research Institute, Tiengiang, Vietnam
| | - Shyi-Dong Yeh
- Department of Plant Pathology, National Chung Hsing University, Taichung, Taiwan, R.O.C
- Advanced Plant Biotechnology Center, National Chung Hsing University, Taichung, Taiwan, R.O.C
- Vietnam Overseas Agricultural Science and Technology Innovation Center, National Chung Hsing University, Taichung, Taiwan, R.O.C
| |
Collapse
|
6
|
Dou R, Huang Q, Hu T, Yu F, Hu H, Wang Y, Zhou X, Qian Y. Molecular Variation and Genomic Function of Citrus Vein Enation Virus. Int J Mol Sci 2022; 24:ijms24010412. [PMID: 36613855 PMCID: PMC9820537 DOI: 10.3390/ijms24010412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 12/18/2022] [Accepted: 12/21/2022] [Indexed: 12/28/2022] Open
Abstract
In this study, we identified a new citrus vein enation virus (CVEV) isolate (named CVEV-DT1) through sRNA high-throughput sequencing and traditional sequencing. Phylogenetic analysis based on whole genome sequences of all known CVEV isolates revealed that CVEV-DT1 was in an evolutionary branch with other isolates from China. Molecular variation analysis showed that the single nucleotide variability along CVEV full-length sequences was less than 8%, with more transitions (60.55%) than transversions (39.43%), indicating a genetically homogeneous CVEV population. In addition, non-synonymous nucleotide mutations mainly occurred in ORF1 and ORF2. Based on disorder analysis of all encoded ORF by CVEV-DT1, we identified that the CVEV-DT1 coat protein (CP) formed spherical granules, mainly in the cell nucleus and partly throughout the cytoplasm, with liquid properties through subcellular localization and photobleaching assay. Furthermore, we also confirmed that the CVEV P0 protein has weak post-transcriptional RNA-silencing suppressor activity and could elicit a strong hypersensitive response (HR) in tobacco plants. Collectively, to the best of our knowledge, our study was the first to profile the genomic variation in all the reported CVEV isolates and reveal the functions of CVEV-DT1-encoded proteins.
Collapse
Affiliation(s)
- Runqiu Dou
- State Key Laboratory of Rice Biology, Institute of Biotechnology, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Qingqing Huang
- State Key Laboratory of Rice Biology, Institute of Biotechnology, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Tao Hu
- State Key Laboratory of Rice Biology, Institute of Biotechnology, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Fengzhe Yu
- State Key Laboratory of Rice Biology, Institute of Biotechnology, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Hongxia Hu
- State Key Laboratory of Rice Biology, Institute of Biotechnology, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Yaqin Wang
- State Key Laboratory of Rice Biology, Institute of Biotechnology, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Xueping Zhou
- State Key Laboratory of Rice Biology, Institute of Biotechnology, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Yajuan Qian
- State Key Laboratory of Rice Biology, Institute of Biotechnology, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
- Correspondence: ; Tel.: +86-571-88982677
| |
Collapse
|