2
|
Espinosa O, Mora L, Sanabria C, Ramos A, Rincón D, Bejarano V, Rodríguez J, Barrera N, Álvarez-Moreno C, Cortés J, Saavedra C, Robayo A, Franco OH. Predictive models for health outcomes due to SARS-CoV-2, including the effect of vaccination: a systematic review. Syst Rev 2024; 13:30. [PMID: 38229123 PMCID: PMC10790449 DOI: 10.1186/s13643-023-02411-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 12/04/2023] [Indexed: 01/18/2024] Open
Abstract
BACKGROUND The interaction between modelers and policymakers is becoming more common due to the increase in computing speed seen in recent decades. The recent pandemic caused by the SARS-CoV-2 virus was no exception. Thus, this study aims to identify and assess epidemiological mathematical models of SARS-CoV-2 applied to real-world data, including immunization for coronavirus 2019 (COVID-19). METHODOLOGY PubMed, JSTOR, medRxiv, LILACS, EconLit, and other databases were searched for studies employing epidemiological mathematical models of SARS-CoV-2 applied to real-world data. We summarized the information qualitatively, and each article included was assessed for bias risk using the Joanna Briggs Institute (JBI) and PROBAST checklist tool. The PROSPERO registration number is CRD42022344542. FINDINGS In total, 5646 articles were retrieved, of which 411 were included. Most of the information was published in 2021. The countries with the highest number of studies were the United States, Canada, China, and the United Kingdom; no studies were found in low-income countries. The SEIR model (susceptible, exposed, infectious, and recovered) was the most frequently used approach, followed by agent-based modeling. Moreover, the most commonly used software were R, Matlab, and Python, with the most recurring health outcomes being death and recovery. According to the JBI assessment, 61.4% of articles were considered to have a low risk of bias. INTERPRETATION The utilization of mathematical models increased following the onset of the SARS-CoV-2 pandemic. Stakeholders have begun to incorporate these analytical tools more extensively into public policy, enabling the construction of various scenarios for public health. This contribution adds value to informed decision-making. Therefore, understanding their advancements, strengths, and limitations is essential.
Collapse
Affiliation(s)
- Oscar Espinosa
- Directorate of Analytical, Economic and Actuarial Studies in Health, Instituto de Evaluación Tecnológica en Salud (IETS) & Economic Models and Quantitative Methods Research Group, Centro de Investigaciones para el Desarrollo, Universidad Nacional de Colombia, Bogotá, D.C., Colombia.
| | - Laura Mora
- Directorate of Analytical, Economic and Actuarial Studies in Health, Instituto de Evaluación Tecnológica en Salud (IETS), Bogotá, Colombia
| | - Cristian Sanabria
- Directorate of Analytical, Economic and Actuarial Studies in Health, Instituto de Evaluación Tecnológica en Salud (IETS), Bogotá, Colombia
| | - Antonio Ramos
- Directorate of Analytical, Economic and Actuarial Studies in Health, Instituto de Evaluación Tecnológica en Salud (IETS) & Economic Models and Quantitative Methods Research Group, Centro de Investigaciones para el Desarrollo, Universidad Nacional de Colombia, Bogotá, D.C., Colombia
| | - Duván Rincón
- Directorate of Analytical, Economic and Actuarial Studies in Health, Instituto de Evaluación Tecnológica en Salud (IETS), Bogotá, Colombia
| | - Valeria Bejarano
- Directorate of Analytical, Economic and Actuarial Studies in Health, Instituto de Evaluación Tecnológica en Salud (IETS) & Economic Models and Quantitative Methods Research Group, Centro de Investigaciones para el Desarrollo, Universidad Nacional de Colombia, Bogotá, D.C., Colombia
| | - Jhonathan Rodríguez
- Directorate of Analytical, Economic and Actuarial Studies in Health, Instituto de Evaluación Tecnológica en Salud (IETS) & Economic Models and Quantitative Methods Research Group, Centro de Investigaciones para el Desarrollo, Universidad Nacional de Colombia, Bogotá, D.C., Colombia
| | - Nicolás Barrera
- Directorate of Analytical, Economic and Actuarial Studies in Health, Instituto de Evaluación Tecnológica en Salud (IETS), Bogotá, Colombia
| | | | - Jorge Cortés
- Faculty of Medicine, Universidad Nacional de Colombia, Bogotá, D.C., Colombia
| | - Carlos Saavedra
- Faculty of Medicine, Universidad Nacional de Colombia, Bogotá, D.C., Colombia
| | - Adriana Robayo
- Directorate of Analytical, Economic and Actuarial Studies in Health, Instituto de Evaluación Tecnológica en Salud (IETS), Bogotá, Colombia
| | - Oscar H Franco
- University Medical Center Utrecht, Utrecht University & Harvard T.H. Chan School of Public Health, Harvard University, Cambridge, USA
| |
Collapse
|
3
|
Mendoza-Cano O, Trujillo X, Huerta M, Ríos-Silva M, Guzmán-Esquivel J, Lugo-Radillo A, Benites-Godínez V, Bricio-Barrios JA, Cárdenas-Rojas MI, Ríos-Bracamontes EF, Guzman-Solorzano HP, Baltazar-Rodríguez GM, Ruiz-Montes de Oca V, Ortega-Macías VM, Ortega-Ramírez AD, Murillo-Zamora E. Assessing the Influence of COVID-19 Vaccination Coverage on Excess Mortality across 178 Countries: A Cross-Sectional Study. Vaccines (Basel) 2023; 11:1294. [PMID: 37631862 PMCID: PMC10459907 DOI: 10.3390/vaccines11081294] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 07/20/2023] [Accepted: 07/24/2023] [Indexed: 08/27/2023] Open
Abstract
The COVID-19 pandemic has had a devastating impact on global health, necessitating urgent and effective strategies to mitigate its consequences. Vaccination programs have been implemented worldwide to combat virus transmission and reduce the disease burden. This study aimed to investigate the relationship between COVID-19 vaccination coverage and all-cause excess mortality in 178 nations during the first two years of the pandemic. Multiple regression analysis, after adjusting for life expectancy at birth, confirmed a significant association between higher vaccination coverage and lower all-cause mortality rates (β = -106.8, 95% CI -175.4 to -38.2, p = 0.002). These findings underscore the importance of vaccination campaigns in reducing overall mortality during the COVID-19 pandemic. Evidence-based decision making and resource allocation can benefit from this information, facilitating the optimization of vaccination strategies for maximal impact on mortality reduction. Further research and continuous monitoring are crucial to understanding the long-term effects of vaccination coverage on population health in the ongoing pandemic.
Collapse
Affiliation(s)
- Oliver Mendoza-Cano
- Facultad de Ingeniería Civil, Universidad de Colima, km. 9 Carretera Colima-Coquimatlán, Colima 28400, Mexico
| | - Xóchitl Trujillo
- Centro Universitario de Investigaciones Biomédicas, Universidad de Colima, Av. 25 de Julio 965, Col. Villas San Sebastián, Colima 28045, Mexico
| | - Miguel Huerta
- Centro Universitario de Investigaciones Biomédicas, Universidad de Colima, Av. 25 de Julio 965, Col. Villas San Sebastián, Colima 28045, Mexico
| | - Mónica Ríos-Silva
- Centro Universitario de Investigaciones Biomédicas, CONAHCyT—Universidad de Colima, Av. 25 de Julio 965, Col. Villas San Sebastián, Colima 28045, Mexico
| | - José Guzmán-Esquivel
- Unidad de Investigación en Epidemiología Clínica, Instituto Mexicano del Seguro Social, Av. Lapislázuli 250, Col. El Haya, Colima 28984, Mexico
| | - Agustin Lugo-Radillo
- CONAHCyT—Facultad de Medicina y Cirugía, Universidad Autónoma Benito Juárez de Oaxaca, Ex Hacienda Aguilera S/N, Carr. A San Felipe del Agua, Oaxaca 68020, Mexico
| | - Verónica Benites-Godínez
- Coordinación de Educación en Salud, Instituto Mexicano del Seguro Social, Calzada del Ejercito Nacional 14, Col. Fray Junípero Serra, Nayarit 63160, Mexico
- Unidad Académica de Medicina, Universidad Autónoma de Nayarit, Ciudad de la Cultura Amado Nervo, Nayarit 63155, Mexico
| | | | - Martha Irazema Cárdenas-Rojas
- Unidad de Investigación en Epidemiología Clínica, Instituto Mexicano del Seguro Social, Av. Lapislázuli 250, Col. El Haya, Colima 28984, Mexico
| | - Eder Fernando Ríos-Bracamontes
- Departamento de Medicina Interna, Hospital General de Zona No. 1, Instituto Mexicano del Seguro Social, Av. Lapislázuli 250, Col. El Haya, Colima 28984, Mexico
| | | | - Greta Mariana Baltazar-Rodríguez
- Instituto Tecnológico y de Estudios Superiores de Monterrey, Escuela de Medicina y Ciencias de la Salud, Campus Guadalajara, Av. Gral. Ramón Corona No. 2514, Colonia Nuevo México, Zapopan 45201, Mexico
| | - Valeria Ruiz-Montes de Oca
- Plantel Guadalajara, Escuela de Medicina, Universidad Cuauhtémoc, Av. del Bajío No. 5901, Col. Del Bajío, Zapopan 45019, Mexico
| | | | - Ana Daniela Ortega-Ramírez
- Programa de Doctorado en Ciencias Médicas, Facultad de Medicina, Universidad de Colima, Av. Universidad 333, Col. Las Víboras, Colima 28040, Mexico
| | - Efrén Murillo-Zamora
- Unidad de Investigación en Epidemiología Clínica, Instituto Mexicano del Seguro Social, Av. Lapislázuli 250, Col. El Haya, Colima 28984, Mexico
| |
Collapse
|
4
|
Ali A, Ullah S, Khan MA. The impact of vaccination on the modeling of COVID-19 dynamics: a fractional order model. NONLINEAR DYNAMICS 2022; 110:3921-3940. [PMID: 36060280 PMCID: PMC9420075 DOI: 10.1007/s11071-022-07798-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Accepted: 07/13/2022] [Indexed: 06/15/2023]
Abstract
The coronavirus disease 2019 (COVID-19) is a recent outbreak of respiratory infections that have affected millions of humans all around the world. Initially, the major intervention strategies used to combat the infection were the basic public health measure, nevertheless, vaccination is an effective strategy and has been used to control the incidence of many infectious diseases. Currently, few safe and effective vaccines have been approved to control the inadvertent transmission of COVID-19. In this paper, the modeling approach is adopted to investigate the impact of currently available anti-COVID vaccines on the dynamics of COVID-19. A new fractional-order epidemic model by incorporating the vaccination class is presented. The fractional derivative is considered in the well-known Caputo sense. Initially, the proposed vaccine model for the dynamics of COVID-19 is developed via integer-order differential equations and then the Caputo-type derivative is applied to extend the model to a fractional case. By applying the least square method, the model is fitted to the reported cases in Pakistan and some of the parameters involved in the models are estimated from the actual data. The threshold quantity ( R 0 ) is computed by the Next-generation method. A detailed analysis of the fractional model, such as positivity of model solution, equilibrium points, and stabilities on both disease-free and endemic states are discussed comprehensively. An efficient iterative method is utilized for the numerical solution of the proposed model and the model is then simulated in the light of vaccination. The impact of important influential parameters on the pandemic dynamics is shown graphically. Moreover, the impact of different intervention scenarios on the disease incidence is depicted and it is found that the reduction in the effective contact rate (up to 30%) and enhancement in vaccination rate (up to 50%) to the current baseline values significantly reduced the disease new infected cases.
Collapse
Affiliation(s)
- Aatif Ali
- Department of Mathematics, Abdul Wali Khan University, Mardan, Pakistan
| | - Saif Ullah
- Department of Mathematics, University of Peshawar, Peshawar, Pakistan
- Department of Mathematics, Faculty of Science and Technology, Universitas Airlangga, Surabaya, 60115 Indonesia
| | - Muhammad Altaf Khan
- Faculty of Natural and Agricultural Sciences, University of the Free State, Bloemfontein, South Africa
| |
Collapse
|