1
|
Peng X, Li L, Peng Y, Zhou G, An Z. Bioengineering and omics approaches for Type 1 diabetes practical research: advancements and constraints. Ann Med 2025; 57:2322047. [PMID: 39704022 DOI: 10.1080/07853890.2024.2322047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 02/12/2024] [Accepted: 02/16/2024] [Indexed: 12/21/2024] Open
Abstract
Insulin dependency arises from autoimmunity that targets the β cells of the pancreas, resulting in Type 1 diabetes (T1D). Despite the fact that T1D patients require insulin for survival, insulin does not provide a cure for this disease or prevent its complications. Despite extensive genetic, molecular, and cellular research on T1D over the years, the translation of this understanding into effective clinical therapies continues to pose a significant obstacle. It is therefore difficult to develop effective clinical treatment strategies without a thorough understanding of disease pathophysiology. Pancreatic tissue bioengineering models of human T1D offer a valuable approach to examining and controlling islet function while tackling various facets of the condition. And in recent years, due to advances in high-throughput omics analysis, the genotypic and molecular profiles of T1D have become finer tuned. The present article will examine recent progress in these areas, along with their utilization and constraints in the realm of T1D.
Collapse
Affiliation(s)
- Xi Peng
- Department of Endocrinology and Metabolism, Affiliated Hospital of North Sichuan Medical College, North Sichuan Medical College, Nanchong, Sichuan, China
- Department of Endocrinology and Metabolism, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Ling Li
- Department of Endocrinology and Metabolism, Affiliated Hospital of North Sichuan Medical College, North Sichuan Medical College, Nanchong, Sichuan, China
| | - Yihua Peng
- Department of Endocrinology and Metabolism, Affiliated Hospital of North Sichuan Medical College, North Sichuan Medical College, Nanchong, Sichuan, China
| | - Guangju Zhou
- Department of Endocrinology and Metabolism, Affiliated Hospital of North Sichuan Medical College, North Sichuan Medical College, Nanchong, Sichuan, China
| | - Zhenmei An
- Department of Endocrinology and Metabolism, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
2
|
Gouw BHT, Oliveira FCM, Kooistra HS, Spee B, van Uden L, Penning LC. Improved Differentiation Towards Insulin Producing Beta-Cells Derived from Healthy Canine Pancreatic Ductal Organoids. Vet Sci 2025; 12:362. [PMID: 40284864 PMCID: PMC12030824 DOI: 10.3390/vetsci12040362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2025] [Revised: 03/19/2025] [Accepted: 03/25/2025] [Indexed: 04/29/2025] Open
Abstract
BACKGROUND Diabetes mellitus (DM) is a common potentially life-threatening endocrine disorder in pets and humans. Since only symptomatic treatment is available, a more sustainable treatment is urgently needed. OBJECTIVE The aim of this study is to establish functional differentiated canine pancreatic β-cells that release insulin upon glucose stimulus. METHODS Pancreatic tissue was obtained from surplus material of healthy dogs (n = 4), euthanized for non-pancreatic related research. Ductal cells were isolated and expanded in dog pancreas expansion media (dpEM) and differentiated and maturated in five sequentially added pancreas differentiation media (PDMs). Gene expression was analyzed by reversed transcriptase qPCR (RT-qPCR), and insulin release was analyzed with a canine-specific ELISA. RESULTS Canine pancreatic ductal cells (LGR5 and SOX9 expression) were differentiated into β-cells expressing key β-cell-related genes: Pancreatic and duodenal homeobox 1 (PDX1), NK6 Homeobox 1 (NKX6.1), Glucose Transporter Type 2 (GLUT2), Proprotein convertase subtilisin/kexin type 1 (PCSK1), and low levels of insulin. Neither Glucagon (α-cells) nor LGR5 and SOX9 were expressed, and somatostatin was expressed at low levels. The differentiated cells released insulin upon glucose stimulation. CONCLUSION AND IMPLICATIONS The step-by-step differentiation protocol, mimicking pancreatic organogenesis, resulted in β-cells secreting insulin levels suitable for β-cell disease modelling. It remains to be seen if stem cells from diseased animals behave similarly.
Collapse
Affiliation(s)
- Boyd H. T. Gouw
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, 3584 CM Utrecht, The Netherlands; (B.H.T.G.); (F.C.M.O.); (H.S.K.)
| | - Flavia C. M. Oliveira
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, 3584 CM Utrecht, The Netherlands; (B.H.T.G.); (F.C.M.O.); (H.S.K.)
- Health and Animal Production in Amazônia Program, Universidade Federal Rural da Amazônia, Belém 66077-830, Brazil
| | - Hans S. Kooistra
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, 3584 CM Utrecht, The Netherlands; (B.H.T.G.); (F.C.M.O.); (H.S.K.)
| | - Bart Spee
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, 3584 CM Utrecht, The Netherlands; (B.H.T.G.); (F.C.M.O.); (H.S.K.)
| | - Lisa van Uden
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, 3584 CM Utrecht, The Netherlands; (B.H.T.G.); (F.C.M.O.); (H.S.K.)
| | - Louis C. Penning
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, 3584 CM Utrecht, The Netherlands; (B.H.T.G.); (F.C.M.O.); (H.S.K.)
| |
Collapse
|
3
|
Santos da Silva T, da Silva-Júnior LN, Horvath-Pereira BDO, Valbão MCM, Garcia MHH, Lopes JB, Reis CHB, Barreto RDSN, Buchaim DV, Buchaim RL, Miglino MA. The Role of the Pancreatic Extracellular Matrix as a Tissue Engineering Support for the Bioartificial Pancreas. Biomimetics (Basel) 2024; 9:598. [PMID: 39451804 PMCID: PMC11505355 DOI: 10.3390/biomimetics9100598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 09/22/2024] [Accepted: 09/30/2024] [Indexed: 10/26/2024] Open
Abstract
Type 1 diabetes mellitus (T1DM) is a chronic condition primarily managed with insulin replacement, leading to significant treatment costs. Complications include vasculopathy, cardiovascular diseases, nephropathy, neuropathy, and reticulopathy. Pancreatic islet transplantation is an option but its success does not depend solely on adequate vascularization. The main limitations to clinical islet transplantation are the scarcity of human pancreas, the need for immunosuppression, and the inadequacy of the islet isolation process. Despite extensive research, T1DM remains a major global health issue. In 2015, diabetes affected approximately 415 million people, with projected expenditures of USD 1.7 trillion by 2030. Pancreas transplantation faces challenges due to limited organ availability and complex vascularization. T1DM is caused by the autoimmune destruction of insulin-producing pancreatic cells. Advances in biomaterials, particularly the extracellular matrix (ECM), show promise in tissue reconstruction and transplantation, offering structural and regulatory functions critical for cell migration, differentiation, and adhesion. Tissue engineering aims to create bioartificial pancreases integrating insulin-producing cells and suitable frameworks. This involves decellularization and recellularization techniques to develop biological scaffolds. The challenges include replicating the pancreas's intricate architecture and maintaining cell viability and functionality. Emerging technologies, such as 3D printing and advanced biomaterials, have shown potential in constructing bioartificial organs. ECM components, including collagens and glycoproteins, play essential roles in cell adhesion, migration, and differentiation. Clinical applications focus on developing functional scaffolds for transplantation, with ongoing research addressing immunological responses and long-term efficacy. Pancreatic bioengineering represents a promising avenue for T1DM treatment, requiring further research to ensure successful implementation.
Collapse
Affiliation(s)
- Thamires Santos da Silva
- Graduate Program in Anatomy of Domestic and Wild Animals, Faculty of Veterinary Medicine and Animal Science, University of São Paulo (FMVZ/USP), São Paulo 05508-270, Brazil; (T.S.d.S.); (L.N.d.S.-J.); (B.d.O.H.-P.); (R.d.S.N.B.); (D.V.B.); (R.L.B.)
| | - Leandro Norberto da Silva-Júnior
- Graduate Program in Anatomy of Domestic and Wild Animals, Faculty of Veterinary Medicine and Animal Science, University of São Paulo (FMVZ/USP), São Paulo 05508-270, Brazil; (T.S.d.S.); (L.N.d.S.-J.); (B.d.O.H.-P.); (R.d.S.N.B.); (D.V.B.); (R.L.B.)
- Postgraduate Department, University of Marília (UNIMAR), Marília 17525-902, Brazil; (M.C.M.V.); (M.H.H.G.); (J.B.L.)
| | - Bianca de Oliveira Horvath-Pereira
- Graduate Program in Anatomy of Domestic and Wild Animals, Faculty of Veterinary Medicine and Animal Science, University of São Paulo (FMVZ/USP), São Paulo 05508-270, Brazil; (T.S.d.S.); (L.N.d.S.-J.); (B.d.O.H.-P.); (R.d.S.N.B.); (D.V.B.); (R.L.B.)
| | - Maria Carolina Miglino Valbão
- Postgraduate Department, University of Marília (UNIMAR), Marília 17525-902, Brazil; (M.C.M.V.); (M.H.H.G.); (J.B.L.)
| | | | - Juliana Barbosa Lopes
- Postgraduate Department, University of Marília (UNIMAR), Marília 17525-902, Brazil; (M.C.M.V.); (M.H.H.G.); (J.B.L.)
| | - Carlos Henrique Bertoni Reis
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, University of Marilia (UNIMAR), Marília 17525-902, Brazil;
- UNIMAR Beneficent Hospital (HBU), Medical School, University of Marilia (UNIMAR), Marilia 17525-160, Brazil
| | - Rodrigo da Silva Nunes Barreto
- Graduate Program in Anatomy of Domestic and Wild Animals, Faculty of Veterinary Medicine and Animal Science, University of São Paulo (FMVZ/USP), São Paulo 05508-270, Brazil; (T.S.d.S.); (L.N.d.S.-J.); (B.d.O.H.-P.); (R.d.S.N.B.); (D.V.B.); (R.L.B.)
- Department of Animal Morphology and Physiology, Faculty of Agricultural and Veterinary Sciences, São Paulo State University, Jaboticabal 14884-900, Brazil
| | - Daniela Vieira Buchaim
- Graduate Program in Anatomy of Domestic and Wild Animals, Faculty of Veterinary Medicine and Animal Science, University of São Paulo (FMVZ/USP), São Paulo 05508-270, Brazil; (T.S.d.S.); (L.N.d.S.-J.); (B.d.O.H.-P.); (R.d.S.N.B.); (D.V.B.); (R.L.B.)
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, University of Marilia (UNIMAR), Marília 17525-902, Brazil;
- Medical School, University Center of Adamantina (UNIFAI), Adamantina 17800-000, Brazil
| | - Rogerio Leone Buchaim
- Graduate Program in Anatomy of Domestic and Wild Animals, Faculty of Veterinary Medicine and Animal Science, University of São Paulo (FMVZ/USP), São Paulo 05508-270, Brazil; (T.S.d.S.); (L.N.d.S.-J.); (B.d.O.H.-P.); (R.d.S.N.B.); (D.V.B.); (R.L.B.)
- Department of Biological Sciences, Bauru School of Dentistry (FOB/USP), University of Sao Paulo, Bauru 17012-901, Brazil
| | - Maria Angelica Miglino
- Postgraduate Department, University of Marília (UNIMAR), Marília 17525-902, Brazil; (M.C.M.V.); (M.H.H.G.); (J.B.L.)
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, University of Marilia (UNIMAR), Marília 17525-902, Brazil;
- Postgraduate Program in Animal Health, Production and Environment, University of Marilia (UNIMAR), Marilia 17525-902, Brazil
| |
Collapse
|
4
|
Mei L, Yuwei Y, Weiping L, Zhiran X, Bingzheng F, Jibing C, Hongjun G. Strategy for Clinical Setting of Co-transplantation of Mesenchymal Stem Cells and Pancreatic Islets. Cell Transplant 2024; 33:9636897241259433. [PMID: 38877672 PMCID: PMC11179456 DOI: 10.1177/09636897241259433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 04/29/2024] [Accepted: 05/06/2024] [Indexed: 06/16/2024] Open
Abstract
Islet transplantation may be the most efficient therapeutic technique for patients with type 1 diabetes mellitus (T1DM). However, the clinical application of this method is faced with numerous limitations, including isolated islet apoptosis, recipient rejection, and graft vascular reconstruction. Mesenchymal stem cells (MSCs) possess anti-apoptotic, immunomodulatory, and angiogenic properties. Here, we review recent studies on co-culture and co-transplantation of islets with MSCs. We have summarized the methods of preparation of co-transplantation, especially the merits of co-culture, and the effects of co-transplantation. Accumulating experimental evidence shows that co-culture of islets with MSCs promotes islet survival, enhances islet secretory function, and prevascularizes islets through various pretransplant preparations. This review is expected to provide a reference for exploring the use of MSCs for clinical islet co-transplantation.
Collapse
Affiliation(s)
- Liang Mei
- Graduate School, Guangxi University of Chinese Medicine, Nanning, China
| | - Yang Yuwei
- Ruikang Hospital affiliated to Guangxi University of Chinese Medicine, Nanning, China
| | - Liang Weiping
- Ruikang Hospital affiliated to Guangxi University of Chinese Medicine, Nanning, China
| | - Xu Zhiran
- Ruikang Hospital affiliated to Guangxi University of Chinese Medicine, Nanning, China
| | - Feng Bingzheng
- Ruikang Hospital affiliated to Guangxi University of Chinese Medicine, Nanning, China
| | - Chen Jibing
- Ruikang Hospital affiliated to Guangxi University of Chinese Medicine, Nanning, China
- Guangxi Clinical Research Center for Kidney Diseases of Integrated Traditional Chinese and Western Medicine, Nanning, China
| | - Gao Hongjun
- Ruikang Hospital affiliated to Guangxi University of Chinese Medicine, Nanning, China
- Guangxi Clinical Research Center for Kidney Diseases of Integrated Traditional Chinese and Western Medicine, Nanning, China
| |
Collapse
|
5
|
Gooch AM, Chowdhury SS, Zhang PM, Hu ZM, Westenfelder C. Significant expansion of the donor pool achieved by utilizing islets of variable quality in the production of allogeneic "Neo-Islets", 3-D organoids of Mesenchymal Stromal and islet cells, a novel immune-isolating biotherapy for Type I Diabetes. PLoS One 2023; 18:e0290460. [PMID: 37616230 PMCID: PMC10449143 DOI: 10.1371/journal.pone.0290460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 08/09/2023] [Indexed: 08/26/2023] Open
Abstract
Novel biotherapies for Type 1 Diabetes that provide a significantly expanded donor pool and that deliver all islet hormones without requiring anti-rejection drugs are urgently needed. Scoring systems have improved islet allotransplantation outcomes, but their use may potentially result in the waste of valuable cells for novel therapies. To address these issues, we created "Neo-Islets" (NIs), islet-sized organoids, by co-culturing in ultralow adhesion flasks culture-expanded islet (ICs) and Mesenchymal Stromal Cells (MSCs) (x 24 hrs, 1:1 ratio). The MSCs exert powerful immune- and cyto-protective, anti-inflammatory, proangiogenic, and other beneficial actions in NIs. The robust in vitro expansion of all islet hormone-producing cells is coupled to their expected progressive de-differentiation mediated by serum-induced cell cycle entry and Epithelial-Mesenchymal Transition (EMT). Re-differentiation in vivo of the ICs and resumption of their physiological functions occurs by reversal of EMT and serum withdrawal-induced exit from the cell cycle. Accordingly, we reported that allogeneic, i.p.-administered NIs engraft in the omentum, increase Treg numbers and reestablish permanent normoglycemia in autoimmune diabetic NOD mice without immunosuppression. Our FDA-guided pilot study (INAD 012-0776) in insulin-dependent pet dogs showed similar responses, and both human- and canine-NIs established normoglycemia in STZ-diabetic NOD/SCID mice even though the utilized islets would be scored as unsuitable for transplantation. The present study further demonstrates that islet gene expression profiles (α, β, γ, δ) in human "non-clinical grade" islets obtained from diverse, non-diabetic human and canine donors (n = 6 each) closely correlate with population doublings, and the in vivo re-differentiation of endocrine islet cells clearly corresponds with the reestablishment of euglycemia in diabetic mice. Conclusion: human-NIs created from diverse, "non-clinical grade" donors have the potential to greatly expand patient access to this curative therapy of T1DM, facilitated by the efficient in vitro expansion of ICs that can produce ~ 270 therapeutic NI doses per donor for 70 kg recipients.
Collapse
Affiliation(s)
- Anna M. Gooch
- SymbioCellTech, LLC, Salt Lake City, Utah, United States of Ameirca
| | | | - Ping M. Zhang
- SymbioCellTech, LLC, Salt Lake City, Utah, United States of Ameirca
| | - Zhuma M. Hu
- SymbioCellTech, LLC, Salt Lake City, Utah, United States of Ameirca
| | - Christof Westenfelder
- SymbioCellTech, LLC, Salt Lake City, Utah, United States of Ameirca
- University of Utah, Health Sciences Center, Salt Lake City, Utah, United States of America
| |
Collapse
|
6
|
Liu Y, Zheng JY, Wei ZT, Liu SK, Sun JL, Mao YH, Xu YD, Yang Y. Therapeutic effect and mechanism of combination therapy with ursolic acid and insulin on diabetic nephropathy in a type I diabetic rat model. Front Pharmacol 2022; 13:969207. [PMID: 36249783 PMCID: PMC9561261 DOI: 10.3389/fphar.2022.969207] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 09/14/2022] [Indexed: 11/13/2022] Open
Abstract
This work aims to investigate the therapeutic effect of ursolic acid (UA) plus insulin (In) on diabetic nephropathy (DN) in streptozotocin (STZ)-induced T1DM rats. The experimental groups and operational details are as follows: A total of thirty-two SD rats were divided into four groups: the DN model group (DN, n = 8), DN + In treatment group (DN + In, n = 8), DN + In + UA administration group (DN + In + UA, n = 8), and negative control group (control, n = 8). After 8 weeks, changes in renal function indices and pathological damage were assessed. Additionally, oxidative stress-, apoptosis-, and fibrosis-related proteins in kidney tissue were measured. Compared with the control group, the vehicle group showed higher levels of creatine, blood urea nitrogen, urinary protein, apoptosis, and lipid peroxidation; lower superoxide dismutase levels; more severe levels of pathological kidney damage and renal fibrosis; and a deepened degree of EMT and EndMT. Better outcomes were achieved with the combined treatment than with insulin-only treatment. The improvement of TGF-β1, phosphorylated p38 MAPK, FGFR1, SIRT3 and DPP-4 expression levels in renal tissues after combination therapy was greater than that after insulin-only treatment. This study shows that the combination of insulin and UA significantly improved the pathological changes in the renal tissue of T1DM rats, and the underlying mechanism may be related to improving apoptosis and oxidative stress by regulating p38 MAPK, SIRT3, DPP-4 and FGFR1 levels, thereby blocking TGF-β signaling pathway activation and inhibiting EMT and EndMT processes.
Collapse
Affiliation(s)
- Yang Liu
- Department of Urology, The Affiliated Hospital of Changchun University of Chinese Medicine, Changchun, China
| | - Jin-Yan Zheng
- Department of Endocrinology, The Central Hospital of Zibo, Zibo, China
| | - Zhi-Tao Wei
- Department of Urology, The Affiliated Hospital of Changchun University of Chinese Medicine, Changchun, China
| | - Shu-Kun Liu
- Department of Urology, The Affiliated Hospital of Changchun University of Chinese Medicine, Changchun, China
| | - Ji-Lei Sun
- Department of Urology, The Affiliated Hospital of Changchun University of Chinese Medicine, Changchun, China
| | - Yin-Hui Mao
- Department of Urology, The Affiliated Hospital of Changchun University of Chinese Medicine, Changchun, China
| | - Yong-De Xu
- Department of Urology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
- *Correspondence: Yong-De Xu, ; Yong Yang,
| | - Yong Yang
- Department of Urology, The Affiliated Hospital of Changchun University of Chinese Medicine, Changchun, China
- *Correspondence: Yong-De Xu, ; Yong Yang,
| |
Collapse
|