1
|
Hasan Z, Masood KI, Veldhoen M, Qaiser S, Alenquer M, Akhtar M, Balouch S, Iqbal J, Wassan Y, Hussain S, Feroz K, Muhammad S, Habib A, Kanji A, Khan E, Mian AA, Hussain R, Amorim MJ, Bhutta ZA. Pre-existing IgG antibodies to HCoVs NL63 and OC43 Spike increased during the pandemic and after COVID-19 vaccination. Heliyon 2025; 11:e42171. [PMID: 39916832 PMCID: PMC11795784 DOI: 10.1016/j.heliyon.2025.e42171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 01/21/2025] [Accepted: 01/21/2025] [Indexed: 02/09/2025] Open
Abstract
Preexisting immunity may be associated with increased protection against non-related pathogens such as, SARS-CoV-2. There is little information regarding endemic human coronaviruses (HCOVs) from Pakistan, which experienced a relatively low COVID-19 morbidity and mortality. We investigated antibodies to SARS-CoV-2 and HCoVs NL63 and OC43, comparing sera from prepandemic controls (PPC) period with responses in healthy controls from the pandemic (HC 2021). Further, we investigated the effect of inactivated and mRNA COVID-19 vaccinations on antibody responses to the pandemic and endemic coronaviruses. We measured IgG antibodies to Spike of SARS-CoV-2, HCoV-NL63 and HCoV-OC43 by ELISA. Serum neutralizing capacity was determined using a SARS-CoV-2 psuedotyped virus assay. Vaccinees were sampled prior to vaccination as well after 6, 12 and 24 weeks after COVID-19 inactivated (Sinovac), or mRNA (BNT162b2) vaccine administration. PPC sera showed seropositivity of 15 % to SARS-CoV-2, whilst it was 45 % in the HC 2021 group. Five percent of sera showed virus neutralizing activity in PPC whilst it was 50 % in HC 2021. IgG antibodies to Spike of NL63 and OC43 were also present in PPC; anti-NL63 was 2.9-fold, and anti-OC43 was 10.1-fold higher than to anti-SARS-CoV-2 levels. IgG antibodies to Spike SARS-CoV-2 were positively correlated with HCoV-NL63 in HC 2021, indicating recognition of shared conserved epitopes. IgG antibody levels increased during the pandemic; 2.7-fold to HCoV-NL63 and 1.9-fold to HCoV-OC43. SinoVac and BNT162b2 vaccine induced an increase in IgG antibodies to Spike SARS-CoV-2 as well as HCoV-NL63 and HCoV-OC43. Our data show that antibodies to spike protein of endemic coronaviruses were present in the prepandemic population. Antibodies to SARS-CoV-2, NL63 and OC43 were all raised during the pandemic and further enhanced after COVID-19 vaccinations. The increase in antibodies to spike of coronaviruses would contribute to protection against SARS-CoV-2.
Collapse
Affiliation(s)
- Zahra Hasan
- Department of Pathology and Laboratory Medicine, The Aga Khan University (AKU), Karachi, Pakistan
| | - Kiran Iqbal Masood
- Department of Pathology and Laboratory Medicine, The Aga Khan University (AKU), Karachi, Pakistan
| | - Marc Veldhoen
- Instituto de Medicina Molecular | João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Shama Qaiser
- Department of Pathology and Laboratory Medicine, The Aga Khan University (AKU), Karachi, Pakistan
| | - Marta Alenquer
- Catolica Biomedical Research Center, Católica Medical School, Universidade Católica Portuguesa, Palma de Cima, 1649-023, Lisboa, Portugal
| | - Mishgan Akhtar
- Department of Pathology and Laboratory Medicine, The Aga Khan University (AKU), Karachi, Pakistan
| | - Sadaf Balouch
- Department of Pathology and Laboratory Medicine, The Aga Khan University (AKU), Karachi, Pakistan
| | - Junaid Iqbal
- Center of Excellence in Women and Child Health, AKU, Karachi, Pakistan
| | - Yaqub Wassan
- Center of Excellence in Women and Child Health, AKU, Karachi, Pakistan
| | - Shahneel Hussain
- Center of Excellence in Women and Child Health, AKU, Karachi, Pakistan
| | - Khalid Feroz
- Center of Excellence in Women and Child Health, AKU, Karachi, Pakistan
| | - Sajid Muhammad
- Center of Excellence in Women and Child Health, AKU, Karachi, Pakistan
| | - Atif Habib
- Center of Excellence in Women and Child Health, AKU, Karachi, Pakistan
| | - Akbar Kanji
- Department of Pathology and Laboratory Medicine, The Aga Khan University (AKU), Karachi, Pakistan
| | - Erum Khan
- Department of Pathology and Laboratory Medicine, The Aga Khan University (AKU), Karachi, Pakistan
| | - Afsar Ali Mian
- Center for Regenerative Medicine, AKU, Karachi, Pakistan
| | - Rabia Hussain
- Department of Pathology and Laboratory Medicine, The Aga Khan University (AKU), Karachi, Pakistan
| | - Maria Joao Amorim
- Catolica Biomedical Research Center, Católica Medical School, Universidade Católica Portuguesa, Palma de Cima, 1649-023, Lisboa, Portugal
| | - Zulfiqar A. Bhutta
- Center of Excellence in Women and Child Health, AKU, Karachi, Pakistan
- Centre for Global Child Health, Hospital for Sick Children, Toronto, Canada
| |
Collapse
|
2
|
Suzuki R, Kamiyama A, Ito H, Kawashiro K, Tomiyama T, Tamura T, Suzuki S, Yoshizumi T, Hotta K, Fukuhara T. The development of a rapid, high-throughput neutralization assay using a SARS-CoV-2 reporter. J Virol Methods 2024; 326:114894. [PMID: 38360268 DOI: 10.1016/j.jviromet.2024.114894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 02/10/2024] [Accepted: 02/12/2024] [Indexed: 02/17/2024]
Abstract
Many methods have been developed to measure the neutralizing capacity of antibodies to SARS-CoV-2. However, these methods are low throughput and can be difficult to quickly modify in response to emerging variants. Therefore, an experimental system for rapid and easy measurement of the neutralizing capacity of antibodies against various variants is needed. In this study, we developed an experimental system that can efficiently measure the neutralizing capacity of sera by using a GFP-carrying recombinant SARS-CoV-2 with spike proteins of multiple variants (B.1.1, BA.5, or XBB.1.5). For all 3 recombinant chimeric genomes generated, neutralizing antibody titers determined by measuring GFP fluorescence intensity correlated significantly with those calculated from viral RNA levels measured by RT-qPCR in the supernatant of infected cells. Furthermore, neutralizing antibody titers determined by visually assessing GFP fluorescence using microscopy were also significantly correlated with those determined by RT-qPCR. By using this high-throughput method, it is now possible to quickly and easily determine the neutralizing capacity of antibodies against SARS-CoV-2 variants.
Collapse
Affiliation(s)
- Rigel Suzuki
- Department of Microbiology and Immunology, Faculty of Medicine, Hokkaido University, Sapporo 060-8638, Japan; Institute for Vaccine Research and Development: Hu-IVReD, Hokkaido University, Sapporo 060-8638, Japan
| | - Akifumi Kamiyama
- Department of Microbiology and Immunology, Faculty of Medicine, Hokkaido University, Sapporo 060-8638, Japan
| | - Hayato Ito
- Department of Microbiology and Immunology, Faculty of Medicine, Hokkaido University, Sapporo 060-8638, Japan
| | - Keita Kawashiro
- Department of Urology, Hokkaido University Hospital, Sapporo 060-8638, Japan
| | - Takahiro Tomiyama
- Department of Surgery and Sciences, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Tomokazu Tamura
- Department of Microbiology and Immunology, Faculty of Medicine, Hokkaido University, Sapporo 060-8638, Japan; Institute for Vaccine Research and Development: Hu-IVReD, Hokkaido University, Sapporo 060-8638, Japan
| | - Saori Suzuki
- Department of Microbiology and Immunology, Faculty of Medicine, Hokkaido University, Sapporo 060-8638, Japan; Institute for Vaccine Research and Development: Hu-IVReD, Hokkaido University, Sapporo 060-8638, Japan
| | - Tomoharu Yoshizumi
- Department of Surgery and Sciences, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Kiyohiko Hotta
- Department of Urology, Hokkaido University Hospital, Sapporo 060-8638, Japan
| | - Takasuke Fukuhara
- Department of Microbiology and Immunology, Faculty of Medicine, Hokkaido University, Sapporo 060-8638, Japan; Institute for Vaccine Research and Development: Hu-IVReD, Hokkaido University, Sapporo 060-8638, Japan; Laboratory of Virus Control, Research Institute for Microbial Diseases, Osaka University, Suita 565-0871, Japan; AMED-CREST, Japan Agency for Medical Research and Development (AMED), Tokyo 100-004, Japan.
| |
Collapse
|
3
|
Masood KI, Qaiser S, Abidi SH, Khan E, Mahmood SF, Hussain A, Ghous Z, Imtiaz K, Ali N, Hasan M, Memon HA, Yameen M, Ali S, Baloch S, Lakhani G, Alves PM, Iqbal NT, Ahmed K, Iqbal J, Bhutta ZA, Hussain R, Rottenberg M, Simas JP, Veldhoen M, Ghias K, Hasan Z. Humoral and T cell responses to SARS-CoV-2 reveal insights into immunity during the early pandemic period in Pakistan. BMC Infect Dis 2023; 23:846. [PMID: 38041026 PMCID: PMC10691108 DOI: 10.1186/s12879-023-08829-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 11/15/2023] [Indexed: 12/03/2023] Open
Abstract
BACKGROUND Protection against SARS-CoV-2 is mediated by humoral and T cell responses. Pakistan faced relatively low morbidity and mortality from COVID-19 through the pandemic. To examine the role of prior immunity in the population, we studied IgG antibody response levels, virus neutralizing activity and T cell reactivity to Spike protein in a healthy control group (HG) as compared with COVID-19 cases and individuals from the pre-pandemic period (PP). METHODS HG and COVID-19 participants were recruited between October 2020 and May 2021. Pre-pandemic sera was collected before 2018. IgG antibodies against Spike and its Receptor Binding Domain (RBD) were determined by ELISA. Virus neutralization activity was determined using a PCR-based micro-neutralization assay. T cell - IFN-γ activation was assessed by ELISpot. RESULTS Overall, the magnitude of anti-Spike IgG antibody levels as well as seropositivity was greatest in COVID-19 cases (90%) as compared with HG (39.8%) and PP (12.2%). During the study period, Pakistan experienced three COVID-19 waves. We observed that IgG seropositivity to Spike in HG increased from 10.3 to 83.5% during the study, whilst seropositivity to RBD increased from 7.5 to 33.3%. IgG antibodies to Spike and RBD were correlated positively in all three study groups. Virus neutralizing activity was identified in sera of COVID-19, HG and PP. Spike reactive T cells were present in COVID-19, HG and PP groups. Individuals with reactive T cells included those with and without IgG antibodies to Spike. CONCLUSIONS Antibody and T cell responses to Spike protein in individuals from the pre-pandemic period suggest prior immunity against SARS-CoV-2, most likely from cross-reactive responses. The rising seroprevalence observed in healthy individuals through the pandemic without known COVID-19 may be due to the activation of adaptive immunity from cross-reactive memory B and T cells. This may explain the more favourable COVID-19 outcomes observed in this population.
Collapse
Affiliation(s)
- Kiran Iqbal Masood
- Department of Pathology and Laboratory Medicine, Aga Khan University, Stadium Road, P.O.Box 3500, Karachi, 74800, Pakistan
| | - Shama Qaiser
- Department of Pathology and Laboratory Medicine, Aga Khan University, Stadium Road, P.O.Box 3500, Karachi, 74800, Pakistan
| | - Syed Hani Abidi
- Department of Biological and Biomedical Sciences, Aga Khan University, Karachi, Pakistan
| | - Erum Khan
- Department of Pathology and Laboratory Medicine, Aga Khan University, Stadium Road, P.O.Box 3500, Karachi, 74800, Pakistan
| | | | - Areeba Hussain
- Department of Pathology and Laboratory Medicine, Aga Khan University, Stadium Road, P.O.Box 3500, Karachi, 74800, Pakistan
| | - Zara Ghous
- Department of Pathology and Laboratory Medicine, Aga Khan University, Stadium Road, P.O.Box 3500, Karachi, 74800, Pakistan
| | - Khekahsan Imtiaz
- Department of Pathology and Laboratory Medicine, Aga Khan University, Stadium Road, P.O.Box 3500, Karachi, 74800, Pakistan
| | - Natasha Ali
- Department of Pathology and Laboratory Medicine, Aga Khan University, Stadium Road, P.O.Box 3500, Karachi, 74800, Pakistan
| | - Muhammad Hasan
- Department of Pathology and Laboratory Medicine, Aga Khan University, Stadium Road, P.O.Box 3500, Karachi, 74800, Pakistan
| | - Haris Ali Memon
- Department of Pathology and Laboratory Medicine, Aga Khan University, Stadium Road, P.O.Box 3500, Karachi, 74800, Pakistan
| | - Maliha Yameen
- Department of Pathology and Laboratory Medicine, Aga Khan University, Stadium Road, P.O.Box 3500, Karachi, 74800, Pakistan
| | - Shiza Ali
- Department of Pathology and Laboratory Medicine, Aga Khan University, Stadium Road, P.O.Box 3500, Karachi, 74800, Pakistan
| | - Sadaf Baloch
- Department of Pathology and Laboratory Medicine, Aga Khan University, Stadium Road, P.O.Box 3500, Karachi, 74800, Pakistan
| | - Gulzar Lakhani
- Department of Medicine, Aga Khan University, Karachi, Pakistan
| | - Paula M Alves
- iBET - Instituto de Biologia Experimental E Tecnológica, Oeiras, Portugal
| | - Najeeha Talat Iqbal
- Department of Biological and Biomedical Sciences, Aga Khan University, Karachi, Pakistan
- Department of Pediatrics, Aga Khan University, Karachi, Pakistan
| | - Kumail Ahmed
- Department of Pediatrics, Aga Khan University, Karachi, Pakistan
| | - Junaid Iqbal
- Department of Pediatrics, Aga Khan University, Karachi, Pakistan
| | - Zulfiqar A Bhutta
- Center of Excellence in Women and Child Health, Aga Khan University, Karachi, Pakistan
- Centre for Global Child Health, Hospital for Sick Children, Toronto, Canada
| | - Rabia Hussain
- Department of Pathology and Laboratory Medicine, Aga Khan University, Stadium Road, P.O.Box 3500, Karachi, 74800, Pakistan
| | - Martin Rottenberg
- Department of Microbiology and Tumor Cell Biology, Karolinska Institute, Stockholm, Sweden
| | - J Pedro Simas
- Católica Biomedical Research, Católica Medical School, Universidade Católica Portuguesa, Palma de Cima, 1649-023, Lisboa, Portugal
| | - Marc Veldhoen
- Instituto de Medicina Molecular | João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Kulsoom Ghias
- Department of Biological and Biomedical Sciences, Aga Khan University, Karachi, Pakistan
| | - Zahra Hasan
- Department of Pathology and Laboratory Medicine, Aga Khan University, Stadium Road, P.O.Box 3500, Karachi, 74800, Pakistan.
| |
Collapse
|
4
|
O’Reilly S, Kenny G, Alrawahneh T, Francois N, Gu L, Angeliadis M, de Masson d’Autume V, Garcia Leon A, Feeney ER, Yousif O, Cotter A, de Barra E, Horgan M, Mallon PWG, Gautier V. Development of a novel medium throughput flow-cytometry based micro-neutralisation test for SARS-CoV-2 with applications in clinical vaccine trials and antibody screening. PLoS One 2023; 18:e0294262. [PMID: 38033116 PMCID: PMC10688860 DOI: 10.1371/journal.pone.0294262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 10/27/2023] [Indexed: 12/02/2023] Open
Abstract
Quantifying neutralising capacity of circulating SARS-COV-2 antibodies is critical in evaluating protective humoral immune responses generated post-infection/post-vaccination. Here we describe a novel medium-throughput flow cytometry-based micro-neutralisation test to evaluate Neutralising Antibody (NAb) responses against live SARS-CoV-2 Wild Type and Variants of Concern (VOC) in convalescent/vaccinated populations. Flow Cytometry-Based Micro-Neutralisation Test (Micro-NT) was performed in 96-well plates using clinical isolates WT-B, WT-B.1.177.18 and/or VOCs Beta and Omicron. Plasma samples (All Ireland Infectious Diseases (AIID) Cohort) were serially diluted (8 points, half-log) from 1:20 and pre-incubated with SARS-CoV-2 (1h, 37°C). Virus-plasma mixture were added onto Vero E6 or Vero E6/TMPRSS2 cells for 18h. Percentage infected cells was analysed by automated flow cytometry following trypsinisation, fixation and SARS-CoV-2 Nucleoprotein intracellular staining. Half-maximal Neutralisation Titres (NT50) were determined using non-linear regression. Our assay was compared to Plaque Reduction Neutralisation Test (PRNT) and validated against the First WHO International Standard for anti-SARS-CoV-2 immunoglobulin. Both Micro-NT and PRNT achieved comparable NT50 values. Further validation showed adequate correlation with PRNT using a panel of secondary standards of clinical convalescent and vaccinated plasma samples. We found the assay to be reproducible through measuring both repeatability and intermediate precision. Screening 190 convalescent samples and 11 COVID-19 naive controls (AIID cohort) we demonstrated that Micro-NT has broad dynamic range differentiating NT50s <1/20 to >1/5000. We could also characterise immune-escape VOC Beta and Omicron BA.5, achieving fold-reductions in neutralising capacity similar to those published. Our flow cytometry-based Micro-NT is a robust and reliable assay to quantify NAb titres, and has been selected as an endpoint in clinical trials.
Collapse
Affiliation(s)
- Sophie O’Reilly
- Centre for Experimental Pathogen Host Research (CEPHR), University College Dublin, Belfield, Dublin, Ireland
- School of Medicine, University College Dublin, Belfield, Dublin, Ireland
| | - Grace Kenny
- Centre for Experimental Pathogen Host Research (CEPHR), University College Dublin, Belfield, Dublin, Ireland
- School of Medicine, University College Dublin, Belfield, Dublin, Ireland
- Department of Infectious Diseases, St Vincent’s University Hospital, Elm Park, Dublin, Ireland
| | - Tamara Alrawahneh
- Centre for Experimental Pathogen Host Research (CEPHR), University College Dublin, Belfield, Dublin, Ireland
- School of Medicine, University College Dublin, Belfield, Dublin, Ireland
| | - Nathan Francois
- Centre for Experimental Pathogen Host Research (CEPHR), University College Dublin, Belfield, Dublin, Ireland
- School of Medicine, University College Dublin, Belfield, Dublin, Ireland
| | - Lili Gu
- Centre for Experimental Pathogen Host Research (CEPHR), University College Dublin, Belfield, Dublin, Ireland
- School of Medicine, University College Dublin, Belfield, Dublin, Ireland
| | - Matthew Angeliadis
- Centre for Experimental Pathogen Host Research (CEPHR), University College Dublin, Belfield, Dublin, Ireland
- School of Medicine, University College Dublin, Belfield, Dublin, Ireland
| | - Valentin de Masson d’Autume
- Centre for Experimental Pathogen Host Research (CEPHR), University College Dublin, Belfield, Dublin, Ireland
- School of Medicine, University College Dublin, Belfield, Dublin, Ireland
| | - Alejandro Garcia Leon
- Centre for Experimental Pathogen Host Research (CEPHR), University College Dublin, Belfield, Dublin, Ireland
- School of Medicine, University College Dublin, Belfield, Dublin, Ireland
| | - Eoin R. Feeney
- Centre for Experimental Pathogen Host Research (CEPHR), University College Dublin, Belfield, Dublin, Ireland
- School of Medicine, University College Dublin, Belfield, Dublin, Ireland
- Department of Infectious Diseases, St Vincent’s University Hospital, Elm Park, Dublin, Ireland
| | - Obada Yousif
- Endocrinology Department, Wexford General Hospital, Carricklawn, Wexford, Ireland
| | - Aoife Cotter
- Centre for Experimental Pathogen Host Research (CEPHR), University College Dublin, Belfield, Dublin, Ireland
- School of Medicine, University College Dublin, Belfield, Dublin, Ireland
- Department of Infectious Diseases, Mater Misericordiae University Hospital, Eccles St, Dublin, Ireland
| | - Eoghan de Barra
- Department of Infectious Diseases, Beaumont Hospital, Beaumont, Dublin, Ireland
- Department of International Health and Tropical Medicine, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Mary Horgan
- Department of Infectious Diseases, Cork University Hospital, Wilton, Cork, Ireland
| | - Patrick W. G. Mallon
- Centre for Experimental Pathogen Host Research (CEPHR), University College Dublin, Belfield, Dublin, Ireland
- School of Medicine, University College Dublin, Belfield, Dublin, Ireland
- Department of Infectious Diseases, St Vincent’s University Hospital, Elm Park, Dublin, Ireland
| | - Virginie Gautier
- Centre for Experimental Pathogen Host Research (CEPHR), University College Dublin, Belfield, Dublin, Ireland
- School of Medicine, University College Dublin, Belfield, Dublin, Ireland
- Conway Institute of Biomedical and Biomolecular Research, University College Dublin, Belfield, Dublin 4, Ireland
| |
Collapse
|
5
|
Hasan Z, Masood KI, Qaiser S, Khan E, Hussain A, Ghous Z, Khan U, Yameen M, Hassan I, Nasir MI, Qazi MF, Memon HA, Ali S, Baloch S, Bhutta ZA, Veldhoen M, Pedro Simas J, Mahmood SF, Ghias K, Hussain R. Investigating the impact of prior COVID-19 on IgG antibody and interferon γ responses after BBIBP-CorV vaccination in a disease endemic population: A prospective observational study. Health Sci Rep 2023; 6:e1521. [PMID: 37692793 PMCID: PMC10486204 DOI: 10.1002/hsr2.1521] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 08/04/2023] [Accepted: 08/09/2023] [Indexed: 09/12/2023] Open
Abstract
Background and Aims COVID-19 vaccinations have reduced morbidity and mortality from the disease. Antibodies against severe acute respiratory syndrome coronavirus 2 (SARS‑CoV‑2) have been associated with immune protection. Seroprevalence studies revealed high immunoglobulin G (IgG) antibody levels to SARS-CoV-2 in the Pakistani population before vaccinations. We investigated the effect of BBIBP-CorV vaccination on circulating IgG antibodies and interferon (IFN)-γ from T cells measured in a cohort of healthy individuals, with respect to age, gender, and history of COVID-19. Methods The study was conducted between April and October 2021. BBIBP-CorV vaccinated participants were followed up to 24 weeks. Antibodies to SARS-CoV-2 Spike protein and its receptor-binding domain (RBD) were measured. IFNγ secreted by whole blood stimulation of Spike protein and extended genome antigens was determined. Results Study participants with a history of prior COVID-19 displayed a higher magnitude of IgG antibodies to Spike and RBD. IgG seropositivity was greater in those with prior COVID-19, aged 50 years or younger and in females. At 24 weeks after vaccination, 37.4% of participants showed IFN-γ responses to SARS-CoV-2 antigens. T cell IFN-γ release was higher in those with prior COVID-19 and those aged 50 years or less. Highest IFN-γ release was observed to extended genome antigens in individuals both with and without prior COVID-19. Conclusion We found that IgG seropositivity to both Spike and RBD was affected by prior COVID-19, age and gender. Importantly, seropositive responses persisted up to 24 weeks after vaccination. Persistence of vaccine induced IgG antibodies may be linked to the high seroprevalence observed earlier in unvaccinated individuals. Increased T cell reactivity to Spike and extended genome antigens reflects cellular activation induced by BBIBP-CorV. COVID-19 vaccination may have longer lasting immune responses in populations with a higher seroprevalence. These data inform on vaccination booster policies for high-risk groups.
Collapse
Affiliation(s)
- Zahra Hasan
- Department of Pathology and Laboratory MedicineAga Khan UniversityKarachiPakistan
| | - Kiran Iqbal Masood
- Department of Pathology and Laboratory MedicineAga Khan UniversityKarachiPakistan
| | - Shama Qaiser
- Department of Pathology and Laboratory MedicineAga Khan UniversityKarachiPakistan
| | - Erum Khan
- Department of Pathology and Laboratory MedicineAga Khan UniversityKarachiPakistan
| | - Areeba Hussain
- Department of Pathology and Laboratory MedicineAga Khan UniversityKarachiPakistan
| | - Zara Ghous
- Department of Pathology and Laboratory MedicineAga Khan UniversityKarachiPakistan
| | - Unab Khan
- Department of Family MedicineAga Khan UniversityKarachiPakistan
| | - Maliha Yameen
- Department of Pathology and Laboratory MedicineAga Khan UniversityKarachiPakistan
| | - Imran Hassan
- Department of Family MedicineAga Khan UniversityKarachiPakistan
| | | | | | - Haris Ali Memon
- Department of Pathology and Laboratory MedicineAga Khan UniversityKarachiPakistan
| | - Shiza Ali
- Department of Pathology and Laboratory MedicineAga Khan UniversityKarachiPakistan
| | - Sadaf Baloch
- Department of Pathology and Laboratory MedicineAga Khan UniversityKarachiPakistan
| | - Zulfiqar A. Bhutta
- Center of Excellence in Women and Child HealthAga Khan UniversityKarachiPakistan
- Center for Global Child HealthHospital for Sick ChildrenTorontoCanada
| | - Marc Veldhoen
- Instituto de Medicina Molecular, João Lobo Antunes, Faculdade de MedicinaUniversidade de LisboaLisbonPortugal
| | - J. Pedro Simas
- Católica Biomedical Research Center, Católica Medical SchoolUniversidade Católica PortuguesaLisboaPortugal
| | | | - Kulsoom Ghias
- Department of Biological and Biomedical SciencesAga Khan UniversityKarachiPakistan
| | - Rabia Hussain
- Department of Pathology and Laboratory MedicineAga Khan UniversityKarachiPakistan
| |
Collapse
|
6
|
Chen C, Liang J, Hu H, Li X, Wang L, Wang Z. Research progress in methods for detecting neutralizing antibodies against SARS-CoV-2. Anal Biochem 2023:115199. [PMID: 37257735 DOI: 10.1016/j.ab.2023.115199] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 05/13/2023] [Accepted: 05/27/2023] [Indexed: 06/02/2023]
Abstract
The emergence of SARS-CoV-2 has seriously affected the lives of people worldwide. Clarifying the attenuation rule of SARS-CoV-2 neutralizing antibody (NAb) in vivo is the key to prevent reinfection and recurrence of virus. Currently, the commonly used methods for detecting NAb include virus neutralization tests, pseudovirus neutralization assays, lateral flow immunochromatography and enzyme-linked immunosorbent assays. The detection of NAb not only can be used to evaluate the level of immunity after vaccination or infection but also can provide important theoretical support for virus reinfection, recurrence and vaccine iteration. In this research, the related technologies of SARS-CoV-2 NAb detection were reviewed, aiming to provide better research ideas for SARS-CoV-2 epidemic prevention and control.
Collapse
Affiliation(s)
- Chunxia Chen
- Joint National Laboratory for Antibody Drug Engineering, Clinical Laboratory of the First Affiliated Hospital, Henan University, Kaifeng, 475004, China
| | - Jiahui Liang
- Joint National Laboratory for Antibody Drug Engineering, Clinical Laboratory of the First Affiliated Hospital, Henan University, Kaifeng, 475004, China
| | - Hangzhan Hu
- Joint National Laboratory for Antibody Drug Engineering, Clinical Laboratory of the First Affiliated Hospital, Henan University, Kaifeng, 475004, China; Heze Municipal Hospital, Heze, 274000, China
| | - Xiaoquan Li
- Heze Municipal Hospital, Heze, 274000, China
| | - Li Wang
- Department of Clinical Laboratory, The First Affiliated Hospital of Henan University, Kaifeng, 475004, China.
| | - Zhizeng Wang
- Center of Smart Laboratory and Molecular Medicine, School of Medicine, Chongqing University, Chongqing, 400044, China; Joint National Laboratory for Antibody Drug Engineering, Clinical Laboratory of the First Affiliated Hospital, Henan University, Kaifeng, 475004, China.
| |
Collapse
|
7
|
Hasan M, Moiz B, Qaiser S, Masood KI, Ghous Z, Hussain A, Ali N, Simas JP, Veldhoen M, Alves P, Abidi SH, Ghias K, Khan E, Hasan Z. IgG antibodies to SARS-CoV-2 in asymptomatic blood donors at two time points in Karachi. PLoS One 2022; 17:e0271259. [PMID: 36001587 PMCID: PMC9401161 DOI: 10.1371/journal.pone.0271259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 06/28/2022] [Indexed: 01/08/2023] Open
Abstract
INTRODUCTION An estimated 1.5 million cases were reported in Pakistan until 23 March, 2022. However, SARS-CoV-2 PCR testing capacity has been limited and the incidence of COVID-19 infections is unknown. Volunteer healthy blood donors can be a control population for assessment of SARS-CoV-2 exposure in the population. We determined COVID-19 seroprevalence during the second pandemic wave in Karachi in donors without known infections or symptoms in 4 weeks prior to enrollment. MATERIALS AND METHODS We enrolled 558 healthy blood donors at the Aga Khan University Hospital between December 2020 and February 2021. ABO blood groups were determined. Serum IgG reactivity were measured to spike and receptor binding domain (RBD) proteins. RESULTS Study subjects were predominantly males (99.1%) with a mean age of 29.0±7.4 years. Blood groups were represented by; B (35.8%), O (33.3%), A (23.8%) and AB (7%). Positive IgG responses to spike were detected in 53.4% (95% CI, 49.3-37.5) of blood donors. Positive IgG antibodies to RBD were present in 16.7% (95% CI; 13.6-19.8) of individuals. No significant difference was found between the frequency of IgG antibodies to spike or RBD across age groups. Frequencies of IgG to Spike and RBD antibodies between December 2020 and February 2021 were found to be similar. Seropositivity to either antigen between individuals of different blood groups did not differ. Notably, 31.2% of individuals with IgG antibodies to spike also had IgG antibodies to RBD. Amongst donors who had previously confirmed COVID-19 and were seropositive to spike, 40% had IgG to RBD. CONCLUSIONS Our study provides insights into the seroprevalence of antibodies to COVID-19 in a healthy cohort in Karachi. The differential dynamics of IgG to spike and RBD likely represent both exposure to SARS-CoV-2 and associate with protective immunity in the population.
Collapse
Affiliation(s)
- Muhammad Hasan
- Department of Pathology and Laboratory Medicine, Aga Khan University, Karachi, Pakistan
| | - Bushra Moiz
- Department of Pathology and Laboratory Medicine, Aga Khan University, Karachi, Pakistan
| | - Shama Qaiser
- Department of Pathology and Laboratory Medicine, Aga Khan University, Karachi, Pakistan
| | - Kiran Iqbal Masood
- Department of Pathology and Laboratory Medicine, Aga Khan University, Karachi, Pakistan
| | - Zara Ghous
- Department of Pathology and Laboratory Medicine, Aga Khan University, Karachi, Pakistan
| | - Areeba Hussain
- Department of Pathology and Laboratory Medicine, Aga Khan University, Karachi, Pakistan
| | - Natasha Ali
- Department of Pathology and Laboratory Medicine, Aga Khan University, Karachi, Pakistan
| | - J. Pedro Simas
- Instituto de Medicina Molecular, Universidade de Lisboa, Lisbon, Portugal
| | - Marc Veldhoen
- Instituto de Medicina Molecular, Universidade de Lisboa, Lisbon, Portugal
| | - Paula Alves
- IBET ITQB, Universidade NOVA de Lisboa, Lisbon, Portugal
| | - Syed Hani Abidi
- Department of Biological and Biomedical Sciences, Aga Khan University, Karachi, Pakistan
| | - Kulsoom Ghias
- Department of Biological and Biomedical Sciences, Aga Khan University, Karachi, Pakistan
| | - Erum Khan
- Department of Pathology and Laboratory Medicine, Aga Khan University, Karachi, Pakistan
| | - Zahra Hasan
- Department of Pathology and Laboratory Medicine, Aga Khan University, Karachi, Pakistan
| |
Collapse
|
8
|
Abstract
Measuring SARS-CoV-2 neutralizing antibodies after vaccination or natural infection remains a priority in the ongoing COVID-19 pandemic to determine immunity, especially against newly emerging variants. The gold standard for assessing antibody-mediated immunity against SARS-CoV-2 are cell-based live virus neutralization assays. These assays usually take several days, thereby limiting test capacities and the availability of rapid results. In this study, therefore, we developed a faster live virus assay, which detects neutralizing antibodies through the early measurement of antibody-mediated intracellular virus reduction by SARS-CoV-2 qRT-PCR. In our assay, Vero E6 cells are infected with virus isolates preincubated with patient sera and controls. After 24 h, the intracellular viral load is determined by qRT-PCR using a standard curve to calculate percent neutralization. Utilizing COVID-19 convalescent-phase sera, we show that our novel assay generates results with high sensitivity and specificity as we detected antiviral activity for all tested convalescent-phase sera, but no antiviral activity in prepandemic sera. The assay showed a strong correlation with a conventional virus neutralization assay (rS = 0.8910), a receptor-binding domain ELISA (rS = 0.8485), and a surrogate neutralization assay (rS = 0.8373), proving that quantifying intracellular viral RNA can be used to measure seroneutralization. Our assay can be adapted easily to new variants, as demonstrated by our cross-neutralization experiments. This characteristic is key for rapidly determining immunity against newly emerging variants. Taken together, the novel assay presented here reduces turnaround time significantly while making use of a highly standardized and sensitive SARS-CoV-2 qRT-PCR method as a readout.
Collapse
|