1
|
Shu Y, Zou C, Cai Y, He Q, Wu X, Zhu H, Qv M, Chao Y, Xu C, Tang L, Wu X. Vitamin C deficiency induces hypoglycemia and cognitive disorder through S-nitrosylation-mediated activation of glycogen synthase kinase 3β. Redox Biol 2022; 56:102420. [PMID: 35969998 PMCID: PMC9399387 DOI: 10.1016/j.redox.2022.102420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 07/21/2022] [Indexed: 11/15/2022] Open
Abstract
Vitamin C (VC, l-ascorbic acid) is an essential nutrient that plays a key role in metabolism and functions as a potent antioxidant in regulating the S-nitrosylation and denitrosylation of target proteins. The precise function of VC deprivation in glucose homeostasis is still unknown. In the absence of L-gulono-1,4-lactone oxidoreductase, an essential enzyme for the last step of VC synthesis, VC deprivation resulted in persistent hypoglycemia and subsequent impairment of cognitive functions in female but not male mouse pups. The cognitive disorders caused by VC deprivation were largely reversed when these female pups were given glucose. VC deprivation-induced S-nitrosylation of glycogen synthase kinase 3β (GSK3β) at Cys14, which activated GSK3β and inactivated glycogen synthase to decrease glycogen synthesis and storage under the feeding condition, while VC deprivation inactivated glycogen phosphorylase to decrease glycogenolysis under the fasting condition, ultimately leading to hypoglycemia and cognitive disorders. Treatment with Nω-Nitro-l-arginine methyl ester (l-NAME), a specific inhibitor of nitric oxide synthase, on the other hand, effectively prevented S-nitrosylation and activation of GSK3β in female pups in response to the VC deprivation and reversed hypoglycemia and cognitive disorders. Overall, this research identifies S-nitrosylation of GSK3β and subsequent GSK3β activation as a previously unknown mechanism controlling glucose homeostasis in female pups in response to VC deprivation, implying that VC supplementation in the prevention of hypoglycemia and cognitive disorders should be considered in the certain groups of people, particularly young females.
Collapse
Affiliation(s)
- Yingying Shu
- Department of Endocrinology, The Children's Hospital of Zhejiang University School of Medicine, Hangzhou, 310053, China; National Clinical Research Center for Child Health, The Children's Hospital of Zhejiang University School of Medicine, Hangzhou, 310053, China
| | - Chaochun Zou
- Department of Endocrinology, The Children's Hospital of Zhejiang University School of Medicine, Hangzhou, 310053, China; National Clinical Research Center for Child Health, The Children's Hospital of Zhejiang University School of Medicine, Hangzhou, 310053, China.
| | - Yuqing Cai
- Department of Endocrinology, The Children's Hospital of Zhejiang University School of Medicine, Hangzhou, 310053, China; National Clinical Research Center for Child Health, The Children's Hospital of Zhejiang University School of Medicine, Hangzhou, 310053, China
| | - Qiangqiang He
- Department of Pharmacology, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Xiaowei Wu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Haibin Zhu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Meiyu Qv
- Department of Pharmacology, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Yunqi Chao
- Department of Endocrinology, The Children's Hospital of Zhejiang University School of Medicine, Hangzhou, 310053, China; National Clinical Research Center for Child Health, The Children's Hospital of Zhejiang University School of Medicine, Hangzhou, 310053, China
| | - Chengyun Xu
- National Clinical Research Center for Child Health, The Children's Hospital of Zhejiang University School of Medicine, Hangzhou, 310053, China; Department of Pharmacology, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Lanfang Tang
- National Clinical Research Center for Child Health, The Children's Hospital of Zhejiang University School of Medicine, Hangzhou, 310053, China
| | - Ximei Wu
- Department of Pharmacology, Zhejiang University School of Medicine, Hangzhou, 310058, China.
| |
Collapse
|
2
|
Ismail A, Tanasova M. Importance of GLUT Transporters in Disease Diagnosis and Treatment. Int J Mol Sci 2022; 23:8698. [PMID: 35955833 PMCID: PMC9368955 DOI: 10.3390/ijms23158698] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 07/29/2022] [Accepted: 07/30/2022] [Indexed: 12/04/2022] Open
Abstract
Facilitative sugar transporters (GLUTs) are the primary method of sugar uptake in all mammalian cells. There are 14 different types of those transmembrane proteins, but they transport only a handful of substrates, mainly glucose and fructose. This overlap and redundancy contradict the natural tendency of cells to conserve energy and resources, and has led researchers to hypothesize that different GLUTs partake in more metabolic roles than just sugar transport into cells. Understanding those roles will lead to better therapeutics for a wide variety of diseases and disorders. In this review we highlight recent discoveries of the role GLUTs play in different diseases and disease treatments.
Collapse
Affiliation(s)
- Abdelrahman Ismail
- Department of Chemistry, Michigan Technological University, 1400 Townsend Drive, Houghton, MI 49931, USA
| | - Marina Tanasova
- Department of Chemistry, Michigan Technological University, 1400 Townsend Drive, Houghton, MI 49931, USA
- Health Research Institute, Michigan Technological University, Houghton, MI 49931, USA
| |
Collapse
|