1
|
Mano T, Grutman T, Ilovitsh T. Versatile Ultrasound-Compatible Microfluidic Platform for In Vitro Microvasculature Flow Research and Imaging Optimization. ACS OMEGA 2023; 8:47667-47677. [PMID: 38144052 PMCID: PMC10734021 DOI: 10.1021/acsomega.3c05849] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 11/16/2023] [Accepted: 11/22/2023] [Indexed: 12/26/2023]
Abstract
Ultrasound localization microscopy (ULM) enables the creation of super-resolved images and velocity maps by localizing and tracking microbubble contrast agents through a vascular network over thousands of frames of ultrafast plane wave images. However, a significant challenge lies in developing ultrasound-compatible microvasculature phantoms to investigate microbubble flow and distribution in controlled environments. In this study, we introduce a new class of gelatin-based microfluidic-inspired phantoms uniquely tailored for ULM studies. These devices allow for the creation of complex and reproducible microvascular networks featuring channel diameters as small as 100 μm. Our experiments focused on microbubble behavior under ULM conditions within bifurcating and converging vessel phantoms. We evaluated the impact of bifurcation angles (25, 45, and 55°) and flow rates (0.01, 0.02, and 0.03 mL/min) on the acquisition time of branching channels. Additionally, we explored the saturation time effect of narrow channels branching off larger ones. Significantly longer acquisition times were observed for the narrow vessels, with an average increase of 72% when a 100 μm channel branched off from a 300 μm channel and an average increase of 90% for a 200 μm channel branching off from a 500 μm channel. The robustness of our fabrication method is demonstrated through the creation of two trifurcating microfluidic phantoms, including one that converges back into a single channel, a configuration that cannot be achieved through traditional methods. This new class of ULM phantoms serves as a versatile platform for noninvasively studying complex flow patterns using ultrasound imaging, unlocking new possibilities for in vitro microvasculature research and imaging optimization.
Collapse
Affiliation(s)
- Tamar Mano
- Department
of Biomedical Engineering, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Tal Grutman
- Department
of Biomedical Engineering, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Tali Ilovitsh
- Department
of Biomedical Engineering, Tel Aviv University, Tel Aviv 6997801, Israel
- The
Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 6997801, Israel
| |
Collapse
|
2
|
Hakim Khalili M, Panchal V, Dulebo A, Hawi S, Zhang R, Wilson S, Dossi E, Goel S, Impey SA, Aria AI. Mechanical Behavior of 3D Printed Poly(ethylene glycol) Diacrylate Hydrogels in Hydrated Conditions Investigated Using Atomic Force Microscopy. ACS APPLIED POLYMER MATERIALS 2023; 5:3034-3042. [PMID: 37090424 PMCID: PMC10111335 DOI: 10.1021/acsapm.3c00197] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 03/20/2023] [Indexed: 05/03/2023]
Abstract
Three-dimensional (3D) printed hydrogels fabricated using light processing techniques are poised to replace conventional processing methods used in tissue engineering and organ-on-chip devices. An intrinsic potential problem remains related to structural heterogeneity translated in the degree of cross-linking of the printed layers. Poly(ethylene glycol) diacrylate (PEGDA) hydrogels were used to fabricate both 3D printed multilayer and control monolithic samples, which were then analyzed using atomic force microscopy (AFM) to assess their nanomechanical properties. The fabrication of the hydrogel samples involved layer-by-layer (LbL) projection lithography and bulk cross-linking processes. We evaluated the nanomechanical properties of both hydrogel types in a hydrated environment using the elastic modulus (E) as a measure to gain insight into their mechanical properties. We observed that E increases by 4-fold from 2.8 to 11.9 kPa transitioning from bottom to the top of a single printed layer in a multilayer sample. Such variations could not be seen in control monolithic sample. The variation within the printed layers is ascribed to heterogeneities caused by the photo-cross-linking process. This behavior was rationalized by spatial variation of the polymer cross-link density related to variations of light absorption within the layers attributed to spatial decay of light intensity during the photo-cross-linking process. More importantly, we observed a significant 44% increase in E, from 9.1 to 13.1 kPa, as the indentation advanced from the bottom to the top of the multilayer sample. This finding implies that mechanical heterogeneity is present throughout the entire structure, rather than being limited to each layer individually. These findings are critical for design, fabrication, and application engineers intending to use 3D printed multilayer PEGDA hydrogels for in vitro tissue engineering and organ-on-chip devices.
Collapse
Affiliation(s)
- Mohammad Hakim Khalili
- Surface
Engineering and Precision Centre, School of Aerospace, Transport and
Manufacturing, Cranfield University, Cranfield MK43 0AL, United Kingdom
| | - Vishal Panchal
- Bruker
UK Ltd., Banner Lane, Coventry CV4 9GH, United Kingdom
| | | | - Sara Hawi
- Surface
Engineering and Precision Centre, School of Aerospace, Transport and
Manufacturing, Cranfield University, Cranfield MK43 0AL, United Kingdom
| | - Rujing Zhang
- Sophion
Bioscience A/S, Baltorpvej 154, 2750 Ballerup, Denmark
| | - Sandra Wilson
- Sophion
Bioscience A/S, Baltorpvej 154, 2750 Ballerup, Denmark
| | - Eleftheria Dossi
- Centre
for Defence Chemistry, Cranfield University, Shrivenham, Swindon SN6
8LA, United Kingdom
| | - Saurav Goel
- London
South Bank University, 103 Borough Road, London SE1 0AA, United Kingdom
- University
of Petroleum and Energy Studies, Dehradun 248007, India
| | - Susan A. Impey
- Surface
Engineering and Precision Centre, School of Aerospace, Transport and
Manufacturing, Cranfield University, Cranfield MK43 0AL, United Kingdom
| | - Adrianus Indrat Aria
- Surface
Engineering and Precision Centre, School of Aerospace, Transport and
Manufacturing, Cranfield University, Cranfield MK43 0AL, United Kingdom
| |
Collapse
|
3
|
Khalili M, Williams CJ, Micallef C, Duarte-Martinez F, Afsar A, Zhang R, Wilson S, Dossi E, Impey SA, Goel S, Aria AI. Nanoindentation Response of 3D Printed PEGDA Hydrogels in a Hydrated Environment. ACS APPLIED POLYMER MATERIALS 2023; 5:1180-1190. [PMID: 36817334 PMCID: PMC9926483 DOI: 10.1021/acsapm.2c01700] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Accepted: 12/27/2022] [Indexed: 05/09/2023]
Abstract
Hydrogels are commonly used materials in tissue engineering and organ-on-chip devices. This study investigated the nanomechanical properties of monolithic and multilayered poly(ethylene glycol) diacrylate (PEGDA) hydrogels manufactured using bulk polymerization and layer-by-layer projection lithography processes, respectively. An increase in the number of layers (or reduction in layer thickness) from 1 to 8 and further to 60 results in a reduction in the elastic modulus from 5.53 to 1.69 and further to 0.67 MPa, respectively. It was found that a decrease in the number of layers induces a lower creep index (CIT) in three-dimensional (3D) printed PEGDA hydrogels. This reduction is attributed to mesoscale imperfections that appear as pockets of voids at the interfaces of the multilayered hydrogels attributed to localized regions of unreacted prepolymers, resulting in variations in defect density in the samples examined. An increase in the degree of cross-linking introduced by a higher dosage of ultraviolet (UV) exposure leads to a higher elastic modulus. This implies that the elastic modulus and creep behavior of hydrogels are governed and influenced by the degree of cross-linking and defect density of the layers and interfaces. These findings can guide an optimal manufacturing pathway to obtain the desirable nanomechanical properties in 3D printed PEGDA hydrogels, critical for the performance of living cells and tissues, which can be engineered through control of the fabrication parameters.
Collapse
Affiliation(s)
- Mohammad
Hakim Khalili
- Surface
Engineering and Precision Centre, School of Aerospace, Transport and
Manufacturing, Cranfield University, Cranfield MK43 0AL, U.K.
| | - Craig J. Williams
- The
Henry Royce Institute, Department of Materials, The University of Manchester, Manchester M13 9PL, U.K.
| | - Christian Micallef
- Surface
Engineering and Precision Centre, School of Aerospace, Transport and
Manufacturing, Cranfield University, Cranfield MK43 0AL, U.K.
| | - Fabian Duarte-Martinez
- Surface
Engineering and Precision Centre, School of Aerospace, Transport and
Manufacturing, Cranfield University, Cranfield MK43 0AL, U.K.
| | - Ashfaq Afsar
- School
of Chemistry, University of Edinburgh, David Brewster Road, Edinburgh EH9 3FJ, U.K.
- Centre
for Defence Chemistry, Cranfield University, Shrivenham, Swindon SN6 8LA, U.K.
| | - Rujing Zhang
- Sophion
Bioscience A/S, Baltorpvej 154, 2750 Ballerup, Denmark
| | - Sandra Wilson
- Sophion
Bioscience A/S, Baltorpvej 154, 2750 Ballerup, Denmark
| | - Eleftheria Dossi
- Centre
for Defence Chemistry, Cranfield University, Shrivenham, Swindon SN6 8LA, U.K.
| | - Susan A. Impey
- Surface
Engineering and Precision Centre, School of Aerospace, Transport and
Manufacturing, Cranfield University, Cranfield MK43 0AL, U.K.
| | - Saurav Goel
- London South
Bank University, 103
Borough Road, London SE1
0AA, U.K.
- University
of Petroleum and Energy Studies, Dehradun 248007, India
| | - Adrianus Indrat Aria
- Surface
Engineering and Precision Centre, School of Aerospace, Transport and
Manufacturing, Cranfield University, Cranfield MK43 0AL, U.K.
| |
Collapse
|
4
|
Effect of repeated explicit instructions on visuomotor adaptation and intermanual transfer. Exp Brain Res 2022; 240:2953-2963. [PMID: 36167916 PMCID: PMC9587957 DOI: 10.1007/s00221-022-06470-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 09/23/2022] [Indexed: 11/09/2022]
Abstract
The aim of the present study was to investigate the effect of repeated explicit instructions on visuomotor adaptation, awareness, and intermanual transfer. In a comprehensive study design, 48 participants performed center-out reaching movements before and during exposure to a 60° rotation of visual feedback. Awareness and intermanual transfer were then determined. Twelve participants each were assigned to one of the following adaptation conditions: gradual adaptation, sudden adaptation without instructions, sudden adaptation with a single instruction before adaptation, and sudden adaptation with multiple instructions before and during adaptation. The explicit instructions explained the nature of the visual feedback perturbation and were given using an illustration of a clock face. Analysis of adaptation indices revealed neither increased nor decreased adaptation after repeated instructions compared with a single instruction. In addition, we found significant group differences for the awareness index, with lower awareness after gradual adaptation than after sudden, instructed adaptation. Our data also show increased initial adaptation in aware participants; regardless of whether awareness was developed independently or with instruction. Intermanual transfer did not differ between groups. However, we found a significant correlation between the awareness and intermanual transfer indices. We conclude that the magnitude of the explicit process cannot be further increased by repeated instruction and that intermanual transfer appears to be largely related to the explicit adaptation process.
Collapse
|