1
|
Meireles D, Pombinho R, Cabanes D. Signals behind Listeria monocytogenes virulence mechanisms. Gut Microbes 2024; 16:2369564. [PMID: 38979800 PMCID: PMC11236296 DOI: 10.1080/19490976.2024.2369564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 06/13/2024] [Indexed: 07/10/2024] Open
Abstract
The tight and coordinated regulation of virulence gene expression is crucial to ensure the survival and persistence of bacterial pathogens in different contexts within their hosts. Considering this, bacteria do not express virulence factors homogenously in time and space, either due to their associated fitness cost or to their detrimental effect at specific infection stages. To efficiently infect and persist into their hosts, bacteria have thus to monitor environmental cues or chemical cell-to-cell signaling mechanisms that allow their transition from the external environment to the host, and therefore adjust gene expression levels, intrinsic biological activities, and appropriate behaviors. Listeria monocytogenes (Lm), a major Gram-positive facultative intracellular pathogen, stands out for its adaptability and capacity to thrive in a wide range of environments. Because of that, Lm presents itself as a significant concern in food safety and public health, that can lead to potentially life-threatening infections in humans. A deeper understanding of the intricate bacterial virulence mechanisms and the signals that control them provide valuable insights into the dynamic interplay between Lm and the host. Therefore, this review addresses the role of some crucial signals behind Lm pathogenic virulence mechanisms and explores how the ability to assimilate and interpret these signals is fundamental for pathogenesis, identifying potential targets for innovative antimicrobial strategies.
Collapse
Affiliation(s)
- Diana Meireles
- Instituto de Investigação e Inovação em Saúde, Porto, Portugal
- Group of Molecular Microbiology, IBMC, Porto, Portugal
- Instituto de Ciências Biomédicas Abel Salazar – ICBAS, Porto, Portugal
| | - Rita Pombinho
- Instituto de Investigação e Inovação em Saúde, Porto, Portugal
- Group of Molecular Microbiology, IBMC, Porto, Portugal
| | - Didier Cabanes
- Instituto de Investigação e Inovação em Saúde, Porto, Portugal
- Group of Molecular Microbiology, IBMC, Porto, Portugal
| |
Collapse
|
2
|
Di Renzo L, De Angelis ME, Torresi M, Di Lollo V, Di Teodoro G, Averaimo D, Defourny SVP, Di Giacinto F, Profico C, Olivieri V, Pomilio F, Cammà C, Ferri N, Di Francesco G. First Report of Septicaemic Listeriosis in a Loggerhead Sea Turtle (Caretta caretta) Stranded along the Adriatic Coast: Strain Detection and Sequencing. Animals (Basel) 2022; 12:ani12182364. [PMID: 36139224 PMCID: PMC9495059 DOI: 10.3390/ani12182364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 09/07/2022] [Accepted: 09/07/2022] [Indexed: 11/16/2022] Open
Abstract
Although there are increasing reports on the prevalence of Listeria monocytogenes in wild species, this is the first case of listeriosis in sea turtle. An adult female Caretta caretta was rescued after being stranded alive along the coast of the Abruzzo region (Italy) in summer 2021. The turtle died in 6 days due to respiratory failure. The necropsy showed widespread organ lesions, such as yellow foci of necrosis in many organs, gastrointestinal erosions, pericarditis, and granulomatous pneumonia. Microbiological and histological analyses were performed on several organs. Listeria monocytogenes was isolated from multiple organs, indicating a case of septicaemic listeriosis, and the genome was sequenced and characterized. All the colonies analysed belonged to the same strain serogroup IVb, ST388, and CC388.
Collapse
Affiliation(s)
- Ludovica Di Renzo
- Istituto Zooprofilattico Sperimentale (IZS) dell’Abruzzo e Molise “G. Caporale”, 64100 Teramo, TE, Italy
- Centro Studi Cetacei Onlus, Centro Recupero e Riabilitazione Tartarughe Marine “L.Cagnolaro”, 65125 Pescara, PE, Italy
- Correspondence: ; Tel.: +39-08613321
| | | | - Marina Torresi
- Istituto Zooprofilattico Sperimentale (IZS) dell’Abruzzo e Molise “G. Caporale”, 64100 Teramo, TE, Italy
| | - Valeria Di Lollo
- Istituto Zooprofilattico Sperimentale (IZS) dell’Abruzzo e Molise “G. Caporale”, 64100 Teramo, TE, Italy
| | - Giovanni Di Teodoro
- Istituto Zooprofilattico Sperimentale (IZS) dell’Abruzzo e Molise “G. Caporale”, 64100 Teramo, TE, Italy
| | - Daniela Averaimo
- Istituto Zooprofilattico Sperimentale (IZS) dell’Abruzzo e Molise “G. Caporale”, 64100 Teramo, TE, Italy
| | | | - Federica Di Giacinto
- Istituto Zooprofilattico Sperimentale (IZS) dell’Abruzzo e Molise “G. Caporale”, 64100 Teramo, TE, Italy
| | - Chiara Profico
- Istituto Zooprofilattico Sperimentale (IZS) dell’Abruzzo e Molise “G. Caporale”, 64100 Teramo, TE, Italy
- Centro Studi Cetacei Onlus, Centro Recupero e Riabilitazione Tartarughe Marine “L.Cagnolaro”, 65125 Pescara, PE, Italy
| | - Vincenzo Olivieri
- Centro Studi Cetacei Onlus, Centro Recupero e Riabilitazione Tartarughe Marine “L.Cagnolaro”, 65125 Pescara, PE, Italy
| | - Francesco Pomilio
- Istituto Zooprofilattico Sperimentale (IZS) dell’Abruzzo e Molise “G. Caporale”, 64100 Teramo, TE, Italy
| | - Cesare Cammà
- Istituto Zooprofilattico Sperimentale (IZS) dell’Abruzzo e Molise “G. Caporale”, 64100 Teramo, TE, Italy
| | - Nicola Ferri
- Istituto Zooprofilattico Sperimentale (IZS) dell’Abruzzo e Molise “G. Caporale”, 64100 Teramo, TE, Italy
| | - Gabriella Di Francesco
- Istituto Zooprofilattico Sperimentale (IZS) dell’Abruzzo e Molise “G. Caporale”, 64100 Teramo, TE, Italy
| |
Collapse
|
3
|
De Angelis ME, Martino C, Chiaverini A, Di Pancrazio C, Di Marzio V, Bosica S, Malatesta D, Salucci S, Sulli N, Acciari VA, Pomilio F. Co-Infection of L. monocytogenes and Toxoplasma gondii in a Sheep Flock Causing Abortion and Lamb Deaths. Microorganisms 2022; 10:1647. [PMID: 36014064 PMCID: PMC9415574 DOI: 10.3390/microorganisms10081647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 08/04/2022] [Accepted: 08/10/2022] [Indexed: 11/17/2022] Open
Abstract
Abortion in livestock is a public health burden, and the cause of economic losses for farmers. Abortion can be multifactorial, and a deep diagnostic investigation is important to reduce the spread of zoonotic disease and public health prevention. In our study, a multidisciplinary investigation was conducted to address the cause of increased abortion and lamb mortality on a farm, which detected a co-infection of Listeria monocytogenes and Toxoplasma gondii. Hence, it was possible to conclude that this was the reason for a reduced flock health status and the cause of an increased abortion rate. Furthermore, the investigation work and identification of the L. monocytogenes infection root allowed the reduction of economic loss.
Collapse
Affiliation(s)
| | - Camillo Martino
- Camillo Martino, Department of Veterinary Medicine, University of Perugia, Via S. Costanzo 4, 06126 Perugia, Italy
| | - Alexandra Chiaverini
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise “G. Caporale”, 64100 Teramo, Italy
| | - Chiara Di Pancrazio
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise “G. Caporale”, 64100 Teramo, Italy
| | - Violeta Di Marzio
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise “G. Caporale”, 64100 Teramo, Italy
| | - Serena Bosica
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise “G. Caporale”, 64100 Teramo, Italy
| | - Daniela Malatesta
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise “G. Caporale”, 64100 Teramo, Italy
| | - Stefania Salucci
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise “G. Caporale”, 64100 Teramo, Italy
| | - Nadia Sulli
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise “G. Caporale”, 64100 Teramo, Italy
| | - Vicdalia Aniela Acciari
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise “G. Caporale”, 64100 Teramo, Italy
| | - Francesco Pomilio
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise “G. Caporale”, 64100 Teramo, Italy
| |
Collapse
|
4
|
Liu P, Yue C, Liu L, Gao C, Lyu Y, Deng S, Tian H, Jia X. The function of small RNA in Pseudomonas aeruginosa. PeerJ 2022; 10:e13738. [PMID: 35891650 PMCID: PMC9308961 DOI: 10.7717/peerj.13738] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 06/25/2022] [Indexed: 01/17/2023] Open
Abstract
Pseudomonas aeruginosa, the main conditional pathogen causing nosocomial infection, is a gram-negative bacterium with the largest genome among the known bacteria. The main reasons why Pseudomonas aeruginosa is prone to drug-resistant strains in clinic are: the drug-resistant genes in its genome and the drug resistance easily induced by single antibiotic treatment. With the development of high-throughput sequencing technology and bioinformatics, the functions of various small RNAs (sRNA) in Pseudomonas aeruginosa are being revealed. Different sRNAs regulate gene expression by binding to protein or mRNA to play an important role in the complex regulatory network. In this article, first, the importance and biological functions of different sRNAs in Pseudomonas aeruginosa are explored, and then the evidence and possibilities that sRNAs served as drug therapeutic targets are discussed, which may introduce new directions to develop novel disease treatment strategies.
Collapse
Affiliation(s)
- Pei Liu
- Yan’an University, Key Laboratory of Microbial Drugs Innovation and Transformation, Yan’an, Shaanxi, China
| | - Changwu Yue
- Yan’an University, Key Laboratory of Microbial Drugs Innovation and Transformation, Yan’an, Shaanxi, China
| | - Lihua Liu
- Chengdu Medical College, Non-coding RNA and Drug Discovery Key Laboratory of Sichuan Province, Chengdu, Sichuan, China
| | - Can Gao
- Yan’an University, Key Laboratory of Microbial Drugs Innovation and Transformation, Yan’an, Shaanxi, China
| | - Yuhong Lyu
- Yan’an University, Key Laboratory of Microbial Drugs Innovation and Transformation, Yan’an, Shaanxi, China
| | - Shanshan Deng
- Chengdu Medical College, Non-coding RNA and Drug Discovery Key Laboratory of Sichuan Province, Chengdu, Sichuan, China
| | - Hongying Tian
- Yan’an University, Key Laboratory of Microbial Drugs Innovation and Transformation, Yan’an, Shaanxi, China
| | - Xu Jia
- Chengdu Medical College, Non-coding RNA and Drug Discovery Key Laboratory of Sichuan Province, Chengdu, Sichuan, China,School of Basic Medical Science, Chengdu Medical College, Chengdu, Sichuan, China
| |
Collapse
|