1
|
Park D, Jang J, Seo DH, Kim Y, Jang G. Bacillus velezensis GH1-13 enhances drought tolerance in rice by reducing the accumulation of reactive oxygen species. FRONTIERS IN PLANT SCIENCE 2024; 15:1432494. [PMID: 39391772 PMCID: PMC11465243 DOI: 10.3389/fpls.2024.1432494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 08/30/2024] [Indexed: 10/12/2024]
Abstract
Plant growth-promoting rhizobacteria colonize the rhizosphere through dynamic and intricate interactions with plants, thereby providing various benefits and contributing to plant growth. Moreover, increasing evidence suggests that plant growth-promoting rhizobacteria affect plant tolerance to abiotic stress, but the underlying molecular mechanisms remain largely unknown. In this study, we investigated the effect of Bacillus velezensis strain GH1-13 on drought stress tolerance in rice. Phenotypical analysis, including the measurement of chlorophyll content and survival rate, showed that B. velezensis GH1-13 enhances rice tolerance to drought stress. Additionally, visualizing ROS levels and quantifying the expression of ROS-scavenging genes revealed that GH1-13 treatment reduces ROS accumulation under drought stress by activating the expression of antioxidant genes. Furthermore, the GH1-13 treatment stimulated the jasmonic acid response, which is a key phytohormone that mediates plant stress tolerance. Together with the result that jasmonic acid treatment promotes the expression of antioxidant genes, these findings indicate that B. velezensis GH1-13 improves drought tolerance in rice by reducing ROS accumulation and suggest that activation of the jasmonic acid response is deeply involved in this process.
Collapse
Affiliation(s)
- Dongryeol Park
- School of Biological Sciences and Technology, Chonnam National University, Gwangju, Republic of Korea
| | - Jinwoo Jang
- School of Biological Sciences and Technology, Chonnam National University, Gwangju, Republic of Korea
| | - Deok Hyun Seo
- School of Biological Sciences and Technology, Chonnam National University, Gwangju, Republic of Korea
| | - Yangseon Kim
- Department of Research and Development, Center for Industrialization of Agricultural and Livestock Microorganisms, Jeongeup-si, Republic of Korea
| | - Geupil Jang
- School of Biological Sciences and Technology, Chonnam National University, Gwangju, Republic of Korea
| |
Collapse
|
2
|
Zahra ST, Tariq M, Abdullah M, Ullah MK, Rafiq AR, Siddique A, Shahid MS, Ahmed T, Jamil I. Salt-Tolerant Plant Growth-Promoting Bacteria (ST-PGPB): An Effective Strategy for Sustainable Food Production. Curr Microbiol 2024; 81:304. [PMID: 39133243 DOI: 10.1007/s00284-024-03830-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Accepted: 08/02/2024] [Indexed: 08/13/2024]
Abstract
Soil is the backbone of the agricultural economy of any country. Soil salinity refers to the higher concentration of soluble salts in the soil. Soil salinity is a ruinous abiotic stress that has emerged as a threatening issue for food security. High salt concentration causes an ionic imbalance that hampers water uptake, affecting photosynthesis and other metabolic processes, ultimately resulting in inferior seed germination and stunted plant growth. A wide range of strategies have been adopted to mitigate the harmful effects of salinity such as efficient irrigation techniques, soil reclamation, habitat restoration, flushing, leaching or using salt-tolerant crops, but all the methods have one or more limitations. An alternative and effective strategy is the exploitation of salt-tolerant plant growth-promoting bacteria (ST-PGPB) to mitigate salt stress and improve crop productivity. ST-PGPB can survive in salinity-tainted environments and perform their inherent plant growth-promoting and biocontrol functions effectively. Additionally, ST-PGPB can rescue plants via stress-responsive mechanisms including production of growth regulators, maintenance of osmotic balance, aminocyclopropane-1-carboxylate (ACC) deaminase activity, exopolysaccharides (EPS) activity, improvement in photosynthesis activity, synthesis of compatible solutes, antioxidant activity and regulation of salt overly sensitive (SOS) signaling pathway. Several well-known ST-PGPB, specifically Azospirillum, Bacillus, Burkholderia, Enterobacter, Pseudomonas and Pantoea, are used as bioinoculants to improve the growth of different crops. The application of ST-PGPB allows plants to cope with salt stress by boosting their defense mechanisms. This review highlights the impact of salinity stress on plant growth and the potential of ST-PGPB as a biofertilizer to improve crop productivity under salt stress.
Collapse
Affiliation(s)
- Syeda Tahseen Zahra
- Department of Bioinformatics and Biotechnology, Government College University Faisalabad, Faisalabad, Pakistan
| | - Mohsin Tariq
- Department of Bioinformatics and Biotechnology, Government College University Faisalabad, Faisalabad, Pakistan.
| | - Muhammad Abdullah
- Department of Bioinformatics and Biotechnology, Government College University Faisalabad, Faisalabad, Pakistan
| | - Muhammad Kaleem Ullah
- Institute of Agricultural Extension, Education and Rural Development, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | - Abdul Rafay Rafiq
- Department of Bioinformatics and Biotechnology, Government College University Faisalabad, Faisalabad, Pakistan
| | - Aisha Siddique
- Department of Bioinformatics and Biotechnology, Government College University Faisalabad, Faisalabad, Pakistan
| | - Muhammad Shafiq Shahid
- Department of Plant Sciences, College of Agricultural and Marine Sciences, Sultan Qaboos University, Al-Khod 123, Muscat, Oman
| | - Temoor Ahmed
- Institute of Biotechnology, Zhejiang University, Hangzhou, China
- Department of Life Sciences, Western Caspian University, Baku, Azerbaijan
- MEU Research Unit, Middle East University, Amman, Jordan
| | - Imrana Jamil
- Department of Bioinformatics and Biotechnology, Government College University Faisalabad, Faisalabad, Pakistan
| |
Collapse
|
3
|
Santoyo G, Orozco-Mosqueda MDC, Afridi MS, Mitra D, Valencia-Cantero E, Macías-Rodríguez L. Trichoderma and Bacillus multifunctional allies for plant growth and health in saline soils: recent advances and future challenges. Front Microbiol 2024; 15:1423980. [PMID: 39176277 PMCID: PMC11338895 DOI: 10.3389/fmicb.2024.1423980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 07/24/2024] [Indexed: 08/24/2024] Open
Abstract
Saline soils pose significant challenges to global agricultural productivity, hindering crop growth and efficiency. Despite various mitigation strategies, the issue persists, underscoring the need for innovative and sustainable solutions. One promising approach involves leveraging microorganisms and their plant interactions to reclaim saline soils and bolster crop yields. This review highlights pioneering and recent advancements in utilizing multi-traits Trichoderma and Bacillus species as potent promoters of plant growth and health. It examines the multifaceted impacts of saline stress on plants and microbes, elucidating their physiological and molecular responses. Additionally, it delves into the role of ACC deaminase in mitigating plant ethylene levels by Trichoderma and Bacillus species. Although there are several studies on Trichoderma-Bacillus, much remains to be understood about their synergistic relationships and their potential as auxiliaries in the phytoremediation of saline soils, which is why this work addresses these challenges.
Collapse
Affiliation(s)
- Gustavo Santoyo
- Instituto de Investigaciones Químico Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Ciudad Universitaria, Morelia, Michoacán, Mexico
| | | | | | - Debasis Mitra
- Department of Microbiology, Graphic Era (Deemed to be University), Dehradun, Uttarakhand, India
| | - Eduardo Valencia-Cantero
- Instituto de Investigaciones Químico Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Ciudad Universitaria, Morelia, Michoacán, Mexico
| | - Lourdes Macías-Rodríguez
- Instituto de Investigaciones Químico Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Ciudad Universitaria, Morelia, Michoacán, Mexico
| |
Collapse
|
4
|
Chompa SS, Zuan ATK, Amin AM, Hun TG, Ghazali AHA, Sadeq BM, Akter A, Rahman ME, Rashid HO. Growth and protein response of rice plant with plant growth-promoting rhizobacteria inoculations under salt stress conditions. Int Microbiol 2024; 27:1151-1168. [PMID: 38172302 DOI: 10.1007/s10123-023-00469-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 11/22/2023] [Accepted: 12/08/2023] [Indexed: 01/05/2024]
Abstract
Soil salinity has been one of the significant barriers to improving rice production and quality. According to reports, Bacillus spp. can be utilized to boost plant development in saline soil, although the molecular mechanisms behind the interaction of microbes towards salt stress are not fully known. Variations in rice plant protein expression in response to salt stress and plant growth-promoting rhizobacteria (PGPR) inoculations were investigated using a proteomic method and sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). Findings revealed that 54 salt-responsive proteins were identified by mass spectrometry analysis (LC-MS/MS) with the Bacillus spp. interaction, and the proteins were functionally classified as gene ontology. The initial study showed that all proteins were labeled by mass spectrometry analysis (LC-MS/MS) with Bacillus spp. interaction; the proteins were functionally classified into six groups. Approximately 18 identified proteins (up-regulated, 13; down-regulated, 5) were involved in the photosynthetic process. An increase in the expression of eight up-regulated and two down-regulated proteins in protein synthesis known as chaperones, such as the 60 kDa chaperonin, the 70 kDa heat shock protein BIP, and calreticulin, was involved in rice plant stress tolerance. Several proteins involved in protein metabolism and signaling pathways also experienced significant changes in their expression. The results revealed that phytohormones regulated the manifestation of various chaperones and protein abundance and that protein synthesis played a significant role in regulating salt stress. This study also described how chaperones regulate rice salt stress, their different subcellular localizations, and the activity of chaperones.
Collapse
Affiliation(s)
- Sayma Serine Chompa
- Department of Land Management, Faculty of Agriculture, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | - Ali Tan Kee Zuan
- Department of Land Management, Faculty of Agriculture, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia.
| | - Adibah Mohd Amin
- Department of Land Management, Faculty of Agriculture, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | - Tan Geok Hun
- Department of Land Management, Faculty of Agriculture, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | | | - Buraq Musa Sadeq
- Department of Land Management, Faculty of Agriculture, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | - Amaily Akter
- Department of Land Management, Faculty of Agriculture, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | - Md Ekhlasur Rahman
- Department of Land Management, Faculty of Agriculture, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
- Divisional Laboratory, Soil Resource Development Institute, Krishi Khamar Sarak, Farmgate, Dhaka, 1215, Bangladesh
| | - Harun Or Rashid
- Department of Modern Languages & Communications, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| |
Collapse
|
5
|
Siddika A, Rashid AA, Khan SN, Khatun A, Karim MM, Prasad PV, Hasanuzzaman M. Harnessing plant growth-promoting rhizobacteria, Bacillus subtilis and B. aryabhattai to combat salt stress in rice: a study on the regulation of antioxidant defense, ion homeostasis, and photosynthetic parameters. FRONTIERS IN PLANT SCIENCE 2024; 15:1419764. [PMID: 38938633 PMCID: PMC11208634 DOI: 10.3389/fpls.2024.1419764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 05/28/2024] [Indexed: 06/29/2024]
Abstract
Introduction The ongoing global expansion of salt-affected land is a significant factor, limiting the growth and yield of crops, particularly rice (Oryza sativa L). This experiment explores the mitigation of salt-induced damage in rice (cv BRRI dhan100) following the application of plant growth-promoting rhizobacteria (PGPR). Methods Rice seedlings, at five- and six-weeks post-transplanting, were subjected to salt stress treatments using 50 and 100 mM NaCl at seven-day intervals. Bacterial cultures consisting of endophytic PGPR (Bacillus subtilis and B. aryabhattai) and an epiphytic PGPR (B. aryabhattai) were administered at three critical stages: transplantation of 42-day-old seedlings, vegetative stage at five weeks post-transplantation, and panicle initiation stage at seven weeks post-transplantation. Results Salt stress induced osmotic stress, ionic imbalances, and oxidative damage in rice plants, with consequent negative effects on growth, decrease in photosynthetic efficiency, and changes in hormonal regulation, along with increased methylglyoxal (MG) toxicity. PGPR treatment alleviated salinity effects by improving plant antioxidant defenses, restoring ionic equilibrium, enhancing water balance, increasing nutrient uptake, improving photosynthetic attributes, bolstering hormone synthesis, and enhancing MG detoxification. Discussion These findings highlight the potential of PGPR to bolster physiological and biochemical functionality in rice by serving as an effective buffer against salt stress-induced damage. B. subtilis showed the greatest benefits, while both the endophytic and epiphytic B. aryabhattai had commendable effects in mitigating salt stress-induced damage in rice plants.
Collapse
Affiliation(s)
- Ayesha Siddika
- Department of Agronomy, Faculty of Agriculture, Sher-e-Bangla Agricultural University, Dhaka, Bangladesh
| | | | | | - Amena Khatun
- Department of Agriculture, Noakhali Science and Technology University, Noakhali, Bangladesh
| | | | - P.V. Vara Prasad
- Department of Agronomy, Kansas State University, Manhattan, KS, United States
| | - Mirza Hasanuzzaman
- Department of Agronomy, Faculty of Agriculture, Sher-e-Bangla Agricultural University, Dhaka, Bangladesh
| |
Collapse
|
6
|
Chompa SS, Zuan ATK, Amin AM, Hun TG, Ghazali AHA, Sadeq BM, Akter A, Rahman ME, Rashid HO. Survival of beneficial microbes in liquid bioformulation and optimization of different carrier materials using RSM technique. Int Microbiol 2024; 27:697-706. [PMID: 37651053 DOI: 10.1007/s10123-023-00423-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 08/15/2023] [Accepted: 08/23/2023] [Indexed: 09/01/2023]
Abstract
Soil salinity in rice cultivation areas is considered a severely limiting factor that adversely affects the quantity and quality of rice production in wetlands. Recently, the alternative use of salt-tolerant plant growth-promoting rhizobacteria (PGPR) inhabiting extreme saline conditions has gained remarkable attention and had positive effects on soil and crops. Therefore, a study has been initiated to develop a liquid biofertilizer formulation from locally isolated multi-strain salt-tolerant PGPR strains such as Bacillus tequilensis and Bacillus aryabhattai, using glycerol (5 mM), trehalose (10 mM), and polyvinylpyrrolidone (PVP) at 1% as additives to prolong the shelf-life of the bacteria. After 3 months of incubation, the bacterial population in the trehalose-supplemented mixed strain was highest at 9.73×107 CFU/mL, followed by UPMRE6 and UPMRB9 at 9.40×107 CFU/mL and 8.50×107 CFU/mL respectively. The results showed that the optimal trehalose concentration successfully prolonged the shelf-life of bacteria with minimal cell loss. Validation of quadratic optimization by response surface methodology revealed that the cell density of the mixed strain was 4.278×107 log CFU/mL after 24 h. The precision ratio was 99.7% higher than the predicted value in the minimized medium formulation: 0.267 g/mL trehalose, 1% glycerol, at 120 rpm agitation using the data analysis tools of Design Expert software. The population study confirmed the better and longer survival of salt-tolerant PGPR fortified with 10 mM trehalose, which was considered the best liquid biofertilizer formulation. Moreover, the optimized trehalose-glycerol liquid formulation can be used commercially as it is cost-effective.
Collapse
Affiliation(s)
- Sayma Serine Chompa
- Department of Land Management, Faculty of Agriculture, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | - Ali Tan Kee Zuan
- Department of Land Management, Faculty of Agriculture, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia.
| | - Adibah Mohd Amin
- Department of Land Management, Faculty of Agriculture, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | - Tan Geok Hun
- Department of Land Management, Faculty of Agriculture, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | | | - Buraq Musa Sadeq
- Department of Land Management, Faculty of Agriculture, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | - Amaily Akter
- Department of Land Management, Faculty of Agriculture, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | - Md Ekhlasur Rahman
- Department of Land Management, Faculty of Agriculture, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
- Soil Resource Development Institute, Divisional Laboratory, Krishi Khamar Sarak, Farmgate, 1215, Dhaka, Bangladesh
| | - Harun Or Rashid
- Department of Modern Language & Communications, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| |
Collapse
|
7
|
Wang H, Li J, Liu H, Chen S, Zaman QU, Rehman M, El-Kahtany K, Fahad S, Deng G, Yang J. Variability in morpho-biochemical, photosynthetic pigmentation, enzymatic and quality attributes of potato for salinity stress tolerance. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 203:108036. [PMID: 37738866 DOI: 10.1016/j.plaphy.2023.108036] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 09/08/2023] [Accepted: 09/11/2023] [Indexed: 09/24/2023]
Abstract
Salt stress has emerged as a growing global concern, exerting a significant impact on agricultural productivity. The challenges of salt stress on potatoes are crucial for ensuring food security and sustainable agriculture. To address this issue a pot trial was executed to evaluate the impacts of NaCl in the soil on the growth, photosynthetic pigments, and quality attributes of potato, plants were grown in soil spiked with various concentrations of NaCl (0, 1, 3, 5, 7 g kg-1 of soil). Results revealed that salt stress have negative impacts on the growth, biomass, photosynthesis and quality attributes of potato. Lower level of salt stress 1 g kg-1 of soil improved the fresh and dry biomass of leaves (78.70 and 47.74%) and tubers (86.04 and 88.92%) as compared to control, respectively. Higher levels of salt stress (7 g kg-1) increased lipid peroxidation in leaves and improved the enzymatic antioxidants. It was observed that enzyme activities i.e., SOD (134.97%), POD (101.02%), and CAT (28.87%) increased in leaves and are inversely related to the NaCl concentration. The combination of reduction in chlorophyll contents and soluble sugars resulted in lower levels of quality attributes i.e., amylose (68.90%) and amylopectin (16.70%) of potato. Linear relationship in growth, biomass and physiological attributes showed the strong association with increased salt stress. Furthermore, the PCA-heatmap synergy offers identifying clusters of co-regulated attributes, which pinpoint the physiological responses that exhibit the strongest correlation with increasing salt stress levels. Findings indicate that potato can be grown successfully with (1 g kg-1 of NaCl in soil) without negative impacts on plant quality. Furthermore, this study contributes valuable insights into the complexities of salt stress on potato plants and provides a foundation for developing strategies to enhance their resilience in salt-affected environments.
Collapse
Affiliation(s)
- Hongyang Wang
- Yunnan Key Laboratory of Potato Biology, Yunnan Normal University, Kunming, Yunnan, 650500, China
| | - Junhua Li
- School of Agriculture, Yunnan University, Kunming, Yunnan 650504, China
| | - Hao Liu
- School of Agriculture, Yunnan University, Kunming, Yunnan 650504, China
| | - Shengnan Chen
- Yunnan Key Laboratory of Potato Biology, Yunnan Normal University, Kunming, Yunnan, 650500, China
| | - Qamar Uz Zaman
- Department of Environmental Sciences, The University of Lahore, Lahore 54590, Pakistan
| | - Muzammal Rehman
- Guangxi Key Laboratory of Agro-environment and Agric-products Safety, Key Laboratory of Plant Genetics and Breeding, College of Agriculture, Guangxi University, Nanning 530004, China
| | - Khaled El-Kahtany
- Geology and Geophysics Department, College of Science, King Saud University, PO Box 2455, Riyadh, 11451, Saudi Arabia
| | - Shah Fahad
- Geology and Geophysics Department, College of Science, King Saud University, PO Box 2455, Riyadh, 11451, Saudi Arabia; Department of Agronomy, Abdul Wali Khan University, Mardan, Khyber Pakhtunkhwa 23200, Pakistan.
| | - Gang Deng
- School of Agriculture, Yunnan University, Kunming, Yunnan 650504, China.
| | - Jing Yang
- Yunnan Key Laboratory of Potato Biology, Yunnan Normal University, Kunming, Yunnan, 650500, China.
| |
Collapse
|
8
|
Tasnim A, Jahan I, Azim T, Karmoker D, Seraj ZI. Paired growth of cultivated and halophytic wild rice under salt stress induces bacterial endophytes and gene expression responses. FRONTIERS IN PLANT SCIENCE 2023; 14:1244743. [PMID: 37746015 PMCID: PMC10516563 DOI: 10.3389/fpls.2023.1244743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 08/17/2023] [Indexed: 09/26/2023]
Abstract
Introduction Utilizing salt-affected marginal lands in coastal regions can help meet the growing demand for rice. We explored a nature-based solution involving wild halophytic rice (O. coarctata, Oc) and commercial rice BRRI Dhan 67 (O. sativa, Os) grown in close proximity to each other under salt stress. Methods This was to investigate whether a paired planting strategy could help complement rice growth and yield under stress. We also investigated the gene expression and endophytic bacterial profiles of both Os and Oc in unpaired and paired conditions without and with salt. Results Paired plants exhibited lower salt damage indicators such as smaller reduction in plant height, electrolyte leakage and chlorophyll loss, as well as higher K+/Na+ ratio under saline stress. Some of the 39 endophytic bacteria in the mutualism experiment were unique to Oc and transferred to Os when paired. Differentially expressed genes in leaves of paired Os versus unpaired Os were 1097 (994 up-regulated, 101 down-regulated) without salt and 893 (763 up-regulated, 130 down-regulated) under salt stress. The presence of Oc plants under salt stress influenced major biological processes in Os, including oxidative stress; chitinase activity; phenylalanine catabolic process and response to ABA. Protein binding and serine/threonine kinase activity were primarily affected in molecular function. The downregulated WRKY transcription factor 22 in paired conditions under salt stress played a role in the MAPK signaling pathway, reducing respiratory cell death. The upregulated auxin-responsive protein IAA18 gene, involved in hormone signaling and cell enlargement, was present only in paired plants. Discussion Our findings therefore, offer insights into developing more effective cultivation strategies for sustainable rice production.
Collapse
|
9
|
Gupta S, Pandey S, Kotra V, Kumar A. Assessing the role of ACC deaminase-producing bacteria in alleviating salinity stress and enhancing zinc uptake in plants by altering the root architecture of French bean (Phaseolus vulgaris) plants. PLANTA 2023; 258:3. [PMID: 37212904 DOI: 10.1007/s00425-023-04159-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 05/14/2023] [Indexed: 05/23/2023]
Abstract
MAIN CONCLUSION The consortium inoculation with strains R1 and R4 modified the root system to boost seedling growth, increase the zinc content of French bean pods, and reduce salinity stress. The present study demonstrated the effect of two 1-aminocyclopropane-1-carboxylic acid (ACC) deaminase-producing plant growth-promoting rhizobacteria (Pantoea agglomerans R1 and Pseudomonas fragi R4) alone and consortia on the root system development, French bean growth, and zinc content as well as salinity stress tolerance. Both the strains were characterized for ACC utilization activity (426.23 and 380.54 nmol α-ketobutyrate mg protein-1 h-1), indole acetic acid (IAA) production, phosphate solubilization, ammonia, hydrogen cyanide (HCN), and siderophore production. The strains exhibited zinc solubilization in both plate and broth assays with zinc oxide and zinc carbonate as zinc sources as validated by atomic absorption spectroscopy (AAS). Single or combined inoculations with the selected strains significantly modulated the architectural and morphological traits of the root system of French bean plants. Furthermore, the application of R1and R4 consortia has enhanced zinc content in roots (60.83 mg kg-1), shoots (15.41 mg kg-1), and pods (30.04 mg kg-1) of French bean plants grown in ZnCO3 amended soil. In another set of pot experiments, the consortium bacterization has significantly enhanced length as well as fresh and dry biomass of roots and shoots of the French bean plant under saline stress conditions. Additionally, inoculation with ACC-degrading rhizobacterial strains has increased chlorophyll and carotenoid contents, osmoprotectant content, and antioxidative enzyme (catalase and peroxidase) activity in comparison to their counterparts exposed to salt treatments only. Current findings suggested ACC deaminase-producing rhizobacterial strains hold the potential to improve root architecture which in turn promotes plant growth under salt-stressed conditions as well as enhances micronutrient concentration in host plants.
Collapse
Affiliation(s)
- Shikha Gupta
- Amity Institute of Organic Agriculture, Amity University Uttar Pradesh, Noida, Uttar Pradesh, 201313, India
| | - Sangeeta Pandey
- Amity Institute of Organic Agriculture, Amity University Uttar Pradesh, Noida, Uttar Pradesh, 201313, India.
| | - Vashista Kotra
- Amity Institute of Organic Agriculture, Amity University Uttar Pradesh, Noida, Uttar Pradesh, 201313, India
| | - Atul Kumar
- Division of Seed Science and Technology, ICAR, Indian Agricultural Research Institute, Pusa, New Delhi, 110012, India
| |
Collapse
|
10
|
Sadeq BM, Tan Kee Zuan A, Kasim S, Mui Yun W, Othman NMI, Alkooranee JT, Chompa SS, Akter A, Rahman ME. Humic Acid-Amended Formulation Improves Shelf-Life of Plant Growth-Promoting Rhizobacteria (PGPR) Under Laboratory Conditions. PERTANIKA JOURNAL OF SCIENCE AND TECHNOLOGY 2023. [DOI: 10.47836/pjst.31.3.01] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
Abstract
Plant growth-promoting rhizobacteria (PGPR) is a soil bacterium that positively impacts soil and crops. These microbes invade plant roots, promote plant growth, and improve crop yield production. Bacillus subtilis is a type of PGPR with a short shelf-life due to its structural and cellular components, with a non-producing resistance structure (spores). Therefore, optimum formulations must be developed to prolong the bacterial shelf-life by adding humic acid (HA) as an amendment that could benefit the microbes by providing shelter and carbon sources for bacteria. Thus, a study was undertaken to develop a biofertilizer formulation from locally isolated PGPR, using HA as an amendment. Four doses of HA (0, 0.01, 0.05, and 0.1%) were added to tryptic soy broth (TSB) media and inoculated with B. subtilis (UPMB10), Bacillus tequilensis (UPMRB9) and the combination of both strains. The shelf-life was recorded, and viable cells count and optical density were used to determine the bacterial population and growth trend at monthly intervals and endospores detection using the malachite green staining method. After 12 months of incubation, TSB amended with 0.1% HA recorded the highest bacterial population significantly with inoculation of UPMRB9, followed by mixed strains and UPMB10 at 1.8x107 CFUmL-1, 2.8x107 CFUmL-1and 8.9x106 CFUmL-1, respectively. Results showed that a higher concentration of HA has successfully prolonged the bacterial shelf-life with minimal cell loss. Thus, this study has shown that the optimum concentration of humic acid can extend the bacterial shelf-life and improve the quality of a biofertilizer.
Collapse
|
11
|
Sarker PK, Karmoker D, Shohan MUS, Saha AK, Rima FS, Begum RA, Islam MR, Seraj ZI. Effects of multiple halotolerant rhizobacteria on the tolerance, growth, and yield of rice plants under salt stress. Folia Microbiol (Praha) 2023; 68:55-72. [PMID: 35913659 DOI: 10.1007/s12223-022-00997-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 07/11/2022] [Indexed: 11/26/2022]
Abstract
Halotolerant bacteria get adapted to a saline environment through modified physiological/structural characteristics and may provide stress tolerance along with enhanced growth to the host plants by different direct and indirect mechanisms. This study reports on multiple halotolerant plant growth-promoting rhizobacteria isolated from the coastal soils in Bangladesh, in fields where the halophytic wild rice Oryza coarctata is endemic. The aim was to find halotolerant bacteria for potential use as biofertilizer under normal/salt-stressed conditions. In this study, eight different strains were selected from a total of 20 rhizobacterial isolates from the saline-prone regions of Debhata and Satkhira based on their higher salt tolerance. 16S rRNA gene sequencing results of the rhizobacterial strains revealed that they belonged to Halobacillus, Bacillus, Acinetobactor, and Enterobactor genera. A total of ten halotolerant rhizobacteria (the other 2 bacteria were previously isolated and already reported as beneficial for rice growth) were used as both single inoculants and in combinations and applied to rice growing in pots. To investigate their capability to improve rice growth, physiological parameters such as shoot and root length and weight, chlorophyll content at the seedling stage as well as survival and yield at the reproductive stage were measured in the absence or presence (in concentration 40 or 80 mmol/L) of NaCl and in the absence or presence of the rhizobacteria. At the reproductive stage, only 50% of the uninoculated plants survived without setting any grains in 80 mmol/L NaCl in contrast to 100% survival of the rice plants inoculated with a combination of the rhizobacteria. The combined halotolerant rhizobacterial inoculations showed significantly higher chlorophyll retention as well as yield under the maximum NaCl concentration applied compared to application of single species. Thus, the use of a combination of halotolerant rhizobacteria as bioinoculants for rice plants under moderate salinity can synergistically alleviate the effects of stress and promote rice growth and yield.
Collapse
Affiliation(s)
- Protup Kumer Sarker
- Plant Biotechnology Laboratory, Department of Biochemistry and Molecular Biology, University of Dhaka, Dhaka, Bangladesh
| | - Dola Karmoker
- Plant Biotechnology Laboratory, Department of Biochemistry and Molecular Biology, University of Dhaka, Dhaka, Bangladesh
| | - Mohammad Umer Sharif Shohan
- Plant Biotechnology Laboratory, Department of Biochemistry and Molecular Biology, University of Dhaka, Dhaka, Bangladesh
| | - Anik Kumar Saha
- Plant Biotechnology Laboratory, Department of Biochemistry and Molecular Biology, University of Dhaka, Dhaka, Bangladesh
| | - Fahmida Sultana Rima
- Plant Biotechnology Laboratory, Department of Biochemistry and Molecular Biology, University of Dhaka, Dhaka, Bangladesh
- Department of Biochemistry and Biotechnology, University of Barishal, Barishal, Bangladesh
| | - Rifat Ara Begum
- Plant Biotechnology Laboratory, Department of Biochemistry and Molecular Biology, University of Dhaka, Dhaka, Bangladesh
| | - Md Rakibul Islam
- Plant Biotechnology Laboratory, Department of Biochemistry and Molecular Biology, University of Dhaka, Dhaka, Bangladesh
| | - Zeba Islam Seraj
- Plant Biotechnology Laboratory, Department of Biochemistry and Molecular Biology, University of Dhaka, Dhaka, Bangladesh.
| |
Collapse
|
12
|
Wang D, Fu X, Zhou D, Gao J, Bai W. Engineering of a newly isolated Bacillus tequilensis BL01 for poly-γ-glutamic acid production from citric acid. Microb Cell Fact 2022; 21:276. [PMID: 36581997 PMCID: PMC9798646 DOI: 10.1186/s12934-022-01994-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 12/14/2022] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Poly γ-glutamic acid (γ-PGA) is a promising biopolymer for various applications. For glutamic acid-independent strains, the titer of γ-PGA is too low to meet the industrial demand. In this study, we isolated a novel γ-PGA-producing strain, Bacillus tequilensis BL01, and multiple genetic engineering strategies were implemented to improve γ-PGA production. RESULTS First, the one-factor-at-a-time method was used to investigate the influence of carbon and nitrogen sources and temperature on γ-PGA production. The optimal sources of carbon and nitrogen were sucrose and (NH4)2SO4 at 37 °C, respectively. Second, the sucA, gudB, pgdS, and ggt genes were knocked out simultaneously, which increased the titer of γ-PGA by 1.75 times. Then, the titer of γ-PGA increased to 18.0 ± 0.3 g/L by co-overexpression of the citZ and pyk genes in the mutant strain. Furthermore, the γ-PGA titer reached 25.3 ± 0.8 g/L with a productivity of 0.84 g/L/h and a yield of 1.50 g of γ-PGA/g of citric acid in fed-batch fermentation. It should be noted that this study enables the synthesis of low (1.84 × 105 Da) and high (2.06 × 106 Da) molecular weight of γ-PGA by BL01 and the engineering strain. CONCLUSION The application of recently published strategies to successfully improve γ-PGA production for the new strain B. tequilensis BL01 is reported. The titer of γ-PGA increased 2.17-fold and 1.32-fold compared with that of the wild type strain in the flask and 5 L fermenter. The strain shows excellent promise as a γ-PGA producer compared with previous studies. Meanwhile, different molecular weights of γ-PGA were obtained, enhancing the scope of application in industry.
Collapse
Affiliation(s)
- Dexin Wang
- grid.9227.e0000000119573309CAS Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308 China ,National Center of Technology Innovation for Synthetic Biology, Tianjin, 300308 China
| | - Xiaoping Fu
- grid.9227.e0000000119573309CAS Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308 China ,National Center of Technology Innovation for Synthetic Biology, Tianjin, 300308 China
| | - Dasen Zhou
- grid.413109.e0000 0000 9735 6249College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457 China
| | - Jiaqi Gao
- grid.9227.e0000000119573309CAS Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308 China ,National Center of Technology Innovation for Synthetic Biology, Tianjin, 300308 China ,grid.410726.60000 0004 1797 8419University of Chinese Academy of Sciences, 19A Yuquan Road, Shijingshan District, Beijing, 100049 China
| | - Wenqin Bai
- grid.9227.e0000000119573309CAS Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308 China ,National Center of Technology Innovation for Synthetic Biology, Tianjin, 300308 China
| |
Collapse
|
13
|
Wang G, Weng L, Huang Y, Ling Y, Zhen Z, Lin Z, Hu H, Li C, Guo J, Zhou JL, Chen S, Jia Y, Ren L. Microbiome-metabolome analysis directed isolation of rhizobacteria capable of enhancing salt tolerance of Sea Rice 86. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 843:156817. [PMID: 35750176 DOI: 10.1016/j.scitotenv.2022.156817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 05/22/2022] [Accepted: 06/15/2022] [Indexed: 06/15/2023]
Abstract
Soil salinization has been recognized as one of the main factors causing the decrease of cultivated land area and global plant productivity. Application of salt tolerant plants and improvement of plant salt tolerance are recognized as the major routes for saline soil restoration and utilization. Sea rice 86 (SR86) is known as a rice cultivar capable of growing in saline soil. Genome sequencing and transcriptome analysis of SR86 have been conducted to explore its salt tolerance mechanisms while the contribution of rhizobacteria is underexplored. In the present study, we examined the rhizosphere bacterial diversity and soil metabolome of SR86 seedlings under different salinity to understand their contribution to plant salt tolerance. We found that salt stress could significantly change rhizobacterial diversity and rhizosphere metabolites. Keystone taxa were identified via co-occurrence analysis and the correlation analysis between keystone taxa and rhizosphere metabolites indicated lipids and their derivatives might play an important role in plant salt tolerance. Further, four plant growth promoting rhizobacteria (PGPR), capable of promoting the salt tolerance of SR86, were isolated and characterized. These findings might provide novel insights into the mechanisms of plant salt tolerance mediated by plant-microbe interaction, and promote the isolation and application of PGPR in the restoration and utilization of saline soil.
Collapse
Affiliation(s)
- Guang Wang
- College of Coastal Agricultural Sciences, School of Chemistry and Environment, Guangdong Ocean University, Zhanjiang 524088, China
| | - Liyun Weng
- College of Coastal Agricultural Sciences, School of Chemistry and Environment, Guangdong Ocean University, Zhanjiang 524088, China
| | - Yongxiang Huang
- College of Coastal Agricultural Sciences, School of Chemistry and Environment, Guangdong Ocean University, Zhanjiang 524088, China
| | - Yu Ling
- College of Coastal Agricultural Sciences, School of Chemistry and Environment, Guangdong Ocean University, Zhanjiang 524088, China
| | - Zhen Zhen
- College of Coastal Agricultural Sciences, School of Chemistry and Environment, Guangdong Ocean University, Zhanjiang 524088, China
| | - Zhong Lin
- College of Coastal Agricultural Sciences, School of Chemistry and Environment, Guangdong Ocean University, Zhanjiang 524088, China
| | - Hanqiao Hu
- College of Coastal Agricultural Sciences, School of Chemistry and Environment, Guangdong Ocean University, Zhanjiang 524088, China
| | - Chengyong Li
- College of Coastal Agricultural Sciences, School of Chemistry and Environment, Guangdong Ocean University, Zhanjiang 524088, China; Shenzhen Research Institute of Guangdong Ocean University, Shenzhen 518108, China
| | - Jianfu Guo
- College of Coastal Agricultural Sciences, School of Chemistry and Environment, Guangdong Ocean University, Zhanjiang 524088, China
| | - John L Zhou
- Centre for Green Technology, University of Technology Sydney, 15 Broadway, NSW 2007, Australia
| | - Sha Chen
- Hunan Key Laboratory of Biomass Fiber Functional Materials, School of Life Sciences and Chemistry, Hunan University of Technology, Zhuzhou 412007, China
| | - Yang Jia
- National and Local Joint Engineering Research Center of Ecological Treatment Technology for Urban Water Pollution, Zhejiang Provincial Key Lab for Subtropical Water Environment and Marine Biological Resources Protection, Wenzhou University, Wenzhou 325035, China
| | - Lei Ren
- College of Coastal Agricultural Sciences, School of Chemistry and Environment, Guangdong Ocean University, Zhanjiang 524088, China; Shenzhen Research Institute of Guangdong Ocean University, Shenzhen 518108, China.
| |
Collapse
|
14
|
Khanna K, Kohli SK, Sharma N, Kour J, Devi K, Bhardwaj T, Dhiman S, Singh AD, Sharma N, Sharma A, Ohri P, Bhardwaj R, Ahmad P, Alam P, Albalawi TH. Phytomicrobiome communications: Novel implications for stress resistance in plants. Front Microbiol 2022; 13:912701. [PMID: 36274695 PMCID: PMC9583171 DOI: 10.3389/fmicb.2022.912701] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 07/15/2022] [Indexed: 11/13/2022] Open
Abstract
The agricultural sector is a foremost contributing factor in supplying food at the global scale. There are plethora of biotic as well as abiotic stressors that act as major constraints for the agricultural sector in terms of global food demand, quality, and security. Stresses affect rhizosphere and their communities, root growth, plant health, and productivity. They also alter numerous plant physiological and metabolic processes. Moreover, they impact transcriptomic and metabolomic changes, causing alteration in root exudates and affecting microbial communities. Since the evolution of hazardous pesticides and fertilizers, productivity has experienced elevation but at the cost of impeding soil fertility thereby causing environmental pollution. Therefore, it is crucial to develop sustainable and safe means for crop production. The emergence of various pieces of evidence depicting the alterations and abundance of microbes under stressed conditions proved to be beneficial and outstanding for maintaining plant legacy and stimulating their survival. Beneficial microbes offer a great potential for plant growth during stresses in an economical manner. Moreover, they promote plant growth with regulating phytohormones, nutrient acquisition, siderophore synthesis, and induce antioxidant system. Besides, acquired or induced systemic resistance also counteracts biotic stresses. The phytomicrobiome exploration is crucial to determine the growth-promoting traits, colonization, and protection of plants from adversities caused by stresses. Further, the intercommunications among rhizosphere through a direct/indirect manner facilitate growth and form complex network. The phytomicrobiome communications are essential for promoting sustainable agriculture where microbes act as ecological engineers for environment. In this review, we have reviewed our building knowledge about the role of microbes in plant defense and stress-mediated alterations within the phytomicrobiomes. We have depicted the defense biome concept that infers the design of phytomicrobiome communities and their fundamental knowledge about plant-microbe interactions for developing plant probiotics.
Collapse
Affiliation(s)
- Kanika Khanna
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, India
- Department of Microbiology, DAV University, Jalandhar, India
| | - Sukhmeen Kaur Kohli
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, India
| | - Nandni Sharma
- Department of Zoology, Guru Nanak Dev University, Amritsar, India
| | - Jaspreet Kour
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, India
| | - Kamini Devi
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, India
| | - Tamanna Bhardwaj
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, India
| | - Shalini Dhiman
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, India
| | - Arun Dev Singh
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, India
| | - Neerja Sharma
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, India
| | - Anket Sharma
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, China
| | - Puja Ohri
- Department of Zoology, Guru Nanak Dev University, Amritsar, India
| | - Renu Bhardwaj
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, India
| | - Parvaiz Ahmad
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
- Department of Botany, S.P. College Srinagar, Jammu and Kashmir, India
| | - Pravej Alam
- Department of Biology, College of Science and Humanities, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Thamer H. Albalawi
- Department of Biology, College of Science and Humanities, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| |
Collapse
|
15
|
Retraction: Bacillus tequilensis strain ‘UPMRB9’ improves biochemical attributes and nutrient accumulation in different rice varieties under salinity stress. PLoS One 2022; 17:e0272394. [PMID: 35976854 PMCID: PMC9385013 DOI: 10.1371/journal.pone.0272394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
16
|
Gamalero E, Glick BR. Recent Advances in Bacterial Amelioration of Plant Drought and Salt Stress. BIOLOGY 2022; 11:biology11030437. [PMID: 35336811 PMCID: PMC8945159 DOI: 10.3390/biology11030437] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 03/10/2022] [Accepted: 03/10/2022] [Indexed: 12/16/2022]
Abstract
Simple Summary Salt and drought stress cause enormous crop losses worldwide. Several different approaches may be taken to address this problem, including increased use of irrigation, use of both traditional breeding and genetic engineering to develop salt-tolerant and drought-resistant crop plants, and the directed use of naturally occurring plant growth-promoting bacteria. Here, the mechanisms used by these plant growth-promoting bacteria are summarized and discussed. Moreover, recently reported studies of the effects that these organisms have on the growth of plants in the laboratory, the greenhouse, and the field under high salt and/or drought conditions is discussed in some detail. It is hoped that by understanding the mechanisms that these naturally occurring plant growth-promoting bacteria utilize to overcome damaging environmental stresses, it may be possible to employ these organisms to increase future agricultural productivity. Abstract The recent literature indicates that plant growth-promoting bacteria (PGPB) employ a range of mechanisms to augment a plant’s ability to ameliorate salt and drought stress. These mechanisms include synthesis of auxins, especially indoleacetic acid, which directly promotes plant growth; synthesis of antioxidant enzymes such as catalase, superoxide dismutase and peroxidase, which prevents the deleterious effects of reactive oxygen species; synthesis of small molecule osmolytes, e.g., trehalose and proline, which structures the water content within plant and bacterial cells and reduces plant turgor pressure; nitrogen fixation, which directly improves plant growth; synthesis of exopolysaccharides, which protects plant cells from water loss and stabilizes soil aggregates; synthesis of antibiotics, which protects stress-debilitated plants from soil pathogens; and synthesis of the enzyme 1-aminocyclopropane-1-carboxylate (ACC) deaminase, which lowers the level of ACC and ethylene in plants, thereby decreasing stress-induced plant senescence. Many of the reports of overcoming these plant stresses indicate that the most successful PGPB possess several of these mechanisms; however, the involvement of any particular mechanism in plant protection is nearly always inferred and not proven.
Collapse
Affiliation(s)
- Elisa Gamalero
- Dipartimento di Scienze e Innovazione Tecnologica, Università del Piemonte Orientale, Viale T. Michel 11, 15121 Alessandria, Italy
- Correspondence:
| | - Bernard R. Glick
- Department of Biology, University of Waterloo, Waterloo, ON N2L 3G1, Canada;
| |
Collapse
|