1
|
Yar A, Ullah R, Khan MN, Iqbal M, Ercisli S, Kaplan A, Olana DD, Javed MA, Mohamed ELI, Baowidan S, Harakeh S, Moulay M. Unveiling the germination patterns of Alternaria porri (Ellis) by using regression analysis and hydrothermal time modeling. Sci Rep 2024; 14:25694. [PMID: 39465273 PMCID: PMC11514278 DOI: 10.1038/s41598-024-76050-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 10/10/2024] [Indexed: 10/29/2024] Open
Abstract
Purple blotch disease is a major fungal disease of Allium cepa L. plants which is caused by the fungus Alternaria porri. The best conditions for the growth of Alternaria porri are temperatures between 22 °C and 25 °C and relatively high humidity. The Hydrotime, Thermal Time, and Hydrothermal Time models were used to measure different parameters of seed germination; therefore, we used them to measure the interactive effects of temperature and water potential on the germination conidia of Alternaria porri. The laboratory experiments were carried out at five constant temperatures, between 5 and 30 °C, and five different water potentials between 0 MPa and - 6 MPa. The germination of Alternaria porri conidia was highest at 25 °C and 0 MPa and lowest at 5 °C and - 6 MPa. The percentage of conidia germination decreased rapidly after 25 oC. Conidia germination was also affected by different water potentials, decreasing at lower water potential. Models based on HTT showed a reasonable fit to the germination and growth rate datasets. The best fitting model for conidia germination (R2 = 0.98491) was based on variable base and maximum temperature as a function of water potential. Based on the TT, HT, and models, the highest and lowest values for θT1 were observed at -6.0 MPa at 30 °C, and 0 MPa at 5 °C and the highest and lowest θT2 values were recorded at -6.0 MPa at 5 °C and 0 MPa at 30 °C while the lowest and highest θH values were recorded at -6.0 MPa at 5 °C and 0 MPa at 25 °C, respectively, for the HTT model, the predicted θHTT average value is 16.32 (MPa°Ch-1). Based on the statistical analysis, the cardinal hydrothermal time constant (θHTT) accurately explains the interactive effect of T and Ψ on the germination of Alternaria porri conidia under different environmental conditions.
Collapse
Affiliation(s)
- Ali Yar
- Department of Botany, University of Peshawar, Peshawar, 25120, Pakistan
| | - Rehman Ullah
- Department of Botany, University of Peshawar, Peshawar, 25120, Pakistan
| | - Muhammad Nauman Khan
- Department of Botany, Islamia College Peshawar, Peshawar, 25120, Pakistan
- University Public School, University of Peshawar, Peshawar, 25120, Pakistan
| | - Majid Iqbal
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, 11A, Datun Road, Chaoyang District, Beijing, 100101, China
- University of Chinese Academy of Sciences, (UCAS), Beijing, 100049, China
| | - Sezai Ercisli
- Department of Horticulture, Agriculture Faculty, Ataturk University, Erzurum, Türkiye
- HGF Agro, Ata Teknokent, Erzurum, Türkiye
| | - Alevcan Kaplan
- Department of Crop and Animal Production, Sason Vocational School, Batman University, 72060, Batman, Türkiye
| | - Diriba Dereje Olana
- Department of Biomedical Sciences, Institute of Health, Jimma University, Jimma 378, Jimma, Ethiopia.
| | - Muhammad Ammar Javed
- School of Agriculture and Environment, UWA Institute of Agriculture, The University of Western Australia, 6009, Perth, WA, Australia.
| | - ELsiddig Idriss Mohamed
- Department of Statistics, Faculty of Science, University of Tabuk, 71491, Tabuk, Kingdom of Saudi Arabia
| | - Souad Baowidan
- Information Technology Department, Faculty of Computing and IT, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Steve Harakeh
- King Fahd Medical Research Centre, King Abdulaziz University, 21589, Jeddah, Saudi Arabia
- Faculty of Medicine, Yousef Abdul Latif Jameel Scientific Chair of Prophetic Medicine Application, King Abdulaziz University, 21589, Jeddah, Saudi Arabia
| | - Mohammed Moulay
- Stem Cell Research Unit, King Fahd Medical Research Center, King Abdulaziz University, 21589, Jeddah, Saudi Arabia
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, 21589, Jeddah, Saudi Arabia
| |
Collapse
|
2
|
Amin F, Shah F, Ullah S, Shah W, Ahmed I, Ali B, Khan AA, Malik T, Mustafa AEZMA. The germination response of Zea mays L. to osmotic potentials across optimal temperatures via halo-thermal time model. Sci Rep 2024; 14:3225. [PMID: 38332029 PMCID: PMC11303777 DOI: 10.1038/s41598-024-53129-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 01/29/2024] [Indexed: 02/10/2024] Open
Abstract
The maize (Zea mays L.) is a monocot that is a member of the Poaceae family and a valuable feed for livestock, human food, and raw material for various industries. The halothermal time model determines how plants respond to salt (NaCl) stress under sub-optimal conditions. This model examines the relation between NaClb (g), GR, GP, salinity and temperature stress on germination of seeds dynamics in various crops. Five constant temperatures i.e. 20, 25, 30, 35, and 40 °C and five ψ levels (NaCl concentrations converted to ψ - 0, - 0.2, - 0.4, - 0.6, and - 0.8 MPa) were used in this experiment. In light of the results, the maximum halo-thermal time constant value was recorded at 35 °C temperature, while maximum germination percentage was detected at 30 °C in the controlled condition. Moreover, the lowermost value was recorded at 20 °C at - 0.8 MPa osmotic potential. The highest CAT, APX, and GPX activities were recorded at 15 °C at - 0.8 MPa, while the lowest values were observed for 0 MPa at 30 °C temperature. In conclusion, by employing the halo thermal time model, the germination of maize variety (var.30W52) was accurately predicted for the first time under varying levels of temperature and osmotic potentials.
Collapse
Affiliation(s)
- Fazal Amin
- Department of Botany, University of Peshawar, Peshawar, 25120, Pakistan.
| | - Fakhra Shah
- Department of Botany, University of Peshawar, Peshawar, 25120, Pakistan.
| | - Sami Ullah
- Department of Botany, University of Peshawar, Peshawar, 25120, Pakistan.
| | - Wadood Shah
- Biological Sciences Research Division, Pakistan Forest Institute, Peshawar, 25120, Pakistan.
| | - Iftikhar Ahmed
- National Agricultural Research Center, Islamabad, 45500, Pakistan.
| | - Baber Ali
- Department of Plant Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan.
| | - Amir Abdullah Khan
- Institute of Environment and Ecology, Academy of Environmental Health and Ecological Security, Jiangsu University, Zhenjiang, 212013, China.
| | - Tabarak Malik
- Department of Biomedical Sciences, Institute of Health, Jimma University, 378, Jimma, Ethiopia.
| | - Abd El-Zaher M A Mustafa
- Department of Botany and Microbiology, College of Science, King Saud University, 11451, Riyadh, Saudi Arabia.
| |
Collapse
|
3
|
Khan W, Shah S, Ullah A, Ullah S, Amin F, Iqbal B, Ahmad N, Abdel-Maksoud MA, Okla MK, El-Zaidy M, Al-Qahtani WH, Fahad S. Utilizing hydrothermal time models to assess the effects of temperature and osmotic stress on maize (Zea mays L.) germination and physiological responses. BMC PLANT BIOLOGY 2023; 23:414. [PMID: 37679677 PMCID: PMC10483708 DOI: 10.1186/s12870-023-04429-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 08/29/2023] [Indexed: 09/09/2023]
Abstract
The application of germination models in economic crop management makes them extremely useful for predicting seed germination. Hence, we examined the effect of varying water potentials (Ψs; 0. - 0.3, - 0.6, - 0.9, - 1.2 MPa) and temperatures (Ts; 20, 25, 30, 35, 40 °C) on maize germination and enzymatic antioxidant mechanism. We observed that varying Ts and Ψs significantly influenced germination percentage (GP) and germination rate (GR), and other germination parameters, including germination rate index (GRI), germination index (GI), mean germination index (MGI), mean germination time (MGT), coefficient of the velocity of germination (CVG), and germination energy (GE) (p ≤ 0.01). Maximum (87.60) and minimum (55.20) hydro-time constant (θH) were reported at 35 °C and 20 °C, respectively. In addition, base water potential at 50 percentiles was highest at 30 °C (15.84 MPa) and lowest at 20 °C (15.46 MPa). Furthermore, the optimal, low, and ceiling T (To, Tb and Tc, respectively) were determined as 30 °C, 20 °C and 40 °C, respectively. The highest θT1 and θT2 were reported at 40 °C (0 MPa) and 20 °C (- 0.9 MPa), respectively. HTT has a higher value (R2 = 0.43 at 40 °C) at sub-optimal than supra-optimal temperatures (R2 = 0.41 at 40 °C). Antioxidant enzymes, including peroxidase (POD), catalase (CAT), superoxide dismutase (SOD), ascorbate peroxidase (APX), and glutathione peroxidase (GPX), increased with decreasing Ψs. In contrast, CAT and POD were higher at 20 °C and 40 °C but declined at 25, 30, and 35 °C. The APX and GPX remained unchanged at 20, 25, 30, and 40 °C but declined at 35 °C. Thus, maintaining enzymatic activity is a protective mechanism against oxidative stress. A decline in germination characteristics may result from energy diverting to anti-stress tools (antioxidant enzymes) necessary for eliminating reactive oxygen species (ROS) to reduce salinity-induced oxidative damage. The parameters examined in this study are easily applicable to simulation models of Z. mays L. germination under extreme environmental conditions characterized by water deficits and temperature fluctuations.
Collapse
Affiliation(s)
- Waqif Khan
- Institute of Grassland Science, Northeast Normal University, Key Laboratory of Vegetation Ecology, Ministry of Education, Changchun, China
| | - Sumbal Shah
- Department of Botany, University of Peshawar, Peshawar, 25120, Pakistan
| | - Abd Ullah
- Xinjiang Key Desert Plant Roots Ecology and Vegetation Restoration Laboratory, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, 818 South Beijing Road, Urumqi, 830000, Xinjiang, China
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830000, Xinjiang, China
| | - Sami Ullah
- Department of Botany, University of Peshawar, Peshawar, 25120, Pakistan
| | - Fazal Amin
- Department of Botany, University of Peshawar, Peshawar, 25120, Pakistan
| | - Babar Iqbal
- School of Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212000, China.
| | - Naveed Ahmad
- Joint Center for Single Cell Biology, Shanghai Collaborative Innovation Center of Agri-Seeds, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China.
| | - Mostafa A Abdel-Maksoud
- Botany and Microbiology Department, College of Science, King Saud University, P.O. Box 2455, 11451, Riyadh, Saudi Arabia
| | - Mohammed K Okla
- Botany and Microbiology Department, College of Science, King Saud University, P.O. Box 2455, 11451, Riyadh, Saudi Arabia
| | - Mohamed El-Zaidy
- Botany and Microbiology Department, College of Science, King Saud University, P.O. Box 2455, 11451, Riyadh, Saudi Arabia
| | - Wahidah H Al-Qahtani
- Department of Food Sciences & Nutrition, College of Food and Agricultural Sciences, King Saud University, P.O. Box 270677, 11352, Riyadh, Saudi Arabia
| | - Shah Fahad
- Department of Agronomy, Abdul Wali Khan University Mardan, Mardan, 23200, Khyber Pakhtunkhwa, Pakistan.
| |
Collapse
|
4
|
Retraction: Using mathematical models to evaluate germination rate and seedlings length of chickpea seed (Cicer arietinum L.) to osmotic stress at cardinal temperatures. PLoS One 2022; 17:e0272196. [PMID: 35921299 PMCID: PMC9348661 DOI: 10.1371/journal.pone.0272196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
5
|
Impacts of Ascorbic Acid and Alpha-Tocopherol on Chickpea (Cicer arietinum L.) Grown in Water Deficit Regimes for Sustainable Production. SUSTAINABILITY 2022. [DOI: 10.3390/su14148861] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Drought is a major abiotic stress forced by the changing climate that affects plant production and soil structure and functions. A study was conducted to explore the impacts of ascorbic acid (AsA) and α-tocopherol (α-toc) on the agro-physiological attributes and antioxidant enzymes of chickpea grown in water deficit regions. The results of the soil analysis showed that the electrical conductivity (EC) and pH were decreased from 521 mS/m and 7.08 to 151 mS/m and 6.6 in 20-day drought regimes, respectively. Agronomic outcomes showed that exogenous application of AsA and α-toc increased the germination rate index (GRI), mean germination time (MGT), germination energy (GE), water use efficiency (WUE), germination percentage (GP), and seed vigor index (SVI). However, all the above attributes experienced a decline under 10- and 20-day drought stress. Similarly, the Chl. a, Chl. b, carotenoids, proline, protein, sugar, glycine betaine, and hydrogen peroxide contents were significantly increased. Meanwhile, malondialdehyde, glutathione reductase, and enzymatic antioxidants (APOX, SOD, and POD) increased during 10- and 20-day drought, except CAT, which decreased during drought. The exogenous fertigation of these growth regulators improved the photosynthetic pigments and enzymatic and non-enzymatic antioxidants in stressed plants. The current research concludes that simultaneous dusting of AsA and α-toc could be an efficient technique to mitigate the antagonistic impacts of drought, which might be linked to the regulation of antioxidant defense systems.
Collapse
|
6
|
Quantifying Temperature and Osmotic Stress Impact on Seed Germination Rate and Seedling Growth of Eruca sativa Mill. via Hydrothermal Time Model. Life (Basel) 2022; 12:life12030400. [PMID: 35330151 PMCID: PMC8955359 DOI: 10.3390/life12030400] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 02/27/2022] [Accepted: 03/06/2022] [Indexed: 11/17/2022] Open
Abstract
Germination models are quite helpful in predicting emergence times, dormancy periods, and their applications in crop management. This study investigated the germination behaviors of Eruca sativa Mill. in response to fluctuations in temperatures (Ts) and water potentials (ψs). Germination percentage (GP) increased 95% with rising temperature within the range of 20–30 °C, and decreased 25% at 5 °C. Moreover, each ψ and T resulted in a decrease in GP as ψ decreased. Further, we noted that the θT1 value was substantially high at 30 °C and in (0 MPa), whereas the θT2 value was maximum at 10 °C (−0.02 MPa) and it decreased with decreasing Ψ. The maximum hydrothermal time constant (θHTT) and hydrotime (θH) values were obtained at 10 and 30 °C, respectively. In addition, a linear increase in the GR(g) pattern was observed at Tb and a decrease below the To. The calculated cardinal Ts was 5 °C for the base T, and 30 °C for both the optimum and ceiling T. The germination characteristics were higher at 30 °C having (0 MPa). Therefore, using cardinal temperatures, germination results, and the hydrothermal time model (HTT) could reveal the independent and interactive impacts of both T and the Ψ on the response of seed germination subjected to diverse environmental conditions.
Collapse
|
7
|
Using Halothermal Time Model to Describe Barley (Hordeumvulgare L.) Seed Germination Response to Water Potential and Temperature. Life (Basel) 2022; 12:life12020209. [PMID: 35207497 PMCID: PMC8878096 DOI: 10.3390/life12020209] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Revised: 01/22/2022] [Accepted: 01/27/2022] [Indexed: 11/27/2022] Open
Abstract
Barley (Hordeum vulgare L.) is a salt-tolerant crop with considerable economic value in salinity-affected arid and semiarid areas. In the laboratory experiment, the halothermal time (HaloTT) model was used to examine barley seed germination (SG) at six constant cardinal temperatures (Ts) of 15, 20, 25, 30, 35, and 40 °C under five different water potentials (ψs) of 0, −0.5, −1.5, −1.0, and −2.0 MPa. Results showed that at optimum moisture (0 MPa), the highest germination percentage (GP) was recorded at 20 °C and the lowest at 40 °C. Moreover, GP increased with the accelerated aging period (AAP) and significantly (p ≤ 0.05) decreased with high T. In addition, with a decrease of ψ from 0 to −0.5, −1, 1.5, and −2.0 MPa, GP decreased by 93.33, 76.67, 46.67, and 33.33%, respectively, in comparison with 0 MPa. The maximum halftime constant (θHalo) and coefficient of determination (R2) values were recorded at 20 °C and 30 °C, respectively. The optimum temperature (To) for barley is 20 °C, base Ψ of 50th percentile (Ψb (50)) is −0.23 Mpa, and standard deviation of Ψb (σΨb) is 0.21 MPa. The cardinal Ts for germination is 15 °C (Tb), 20 °C (To), and 40 °C (Tc). The GP, germination rate index (GRI), germination index (GI), coefficient of the velocity of germination (CVG), germination energy (GE), seed vigor index I and II (SVI-I & II), Timson germination index (GI), and root shoot ratio (RSR) were recorded maximum at 0 MPa at 20 °C and minimum at −2.0 MPa at 40 °C. Mean germination time (MGT) and time to 50% germination (T 50%) were maximum at −2 MPa at 40 °C, and minimum at 20 °C, respectively. In conclusion, the HaloTT model accurately predicted the germination time course of barley in response to T, Ψ, or NaCl. Therefore, barley can be regarded as a salt-tolerant plant and suitable for cultivation in arid and semi-arid regions due to its high resistance to salinity.
Collapse
|